Application of Detergents or High Hydrostatic Pressure as Decellularization Processes in Uterine Tissues and Their Subsequent Effects on In Vivo Uterine Regeneration in Murine Models
Infertility caused by ovarian or tubal problems can be treated using In Vitro Fertilization and Embryo Transfer (IVF-ET); however, this is not possible for women with uterine loss and malformations that require uterine reconstruction for the treatment of their infertility. In this study, we are the first to report the usefulness of decellularized matrices as a scaffold for uterine reconstruction. Uterine tissues were extracted from Sprague Dawley (SD) rats and decellularized using either sodium dodecyl sulfate (SDS) or high hydrostatic pressure (HHP) at optimized conditions. Histological staining and quantitative analysis showed that both SDS and HHP methods effectively removed cells from the tissues with, specifically, a significant reduction of DNA contents for HHP constructs. HHP constructs highly retained the collagen content, the main component of extracellular matrices in uterine tissue, compared to SDS constructs and had similar content levels of collagen to the native tissue. The mechanical strength of the HHP constructs was similar to that of the native tissue, while that of the SDS constructs was significantly elevated. Transmission electron microscopy (TEM) revealed no apparent denaturation of collagen fibers in the HHP constructs compared to the SDS constructs. Transplantation of the decellularized tissues into rat uteri revealed the successful regeneration of the uterine tissues with a 3-layer structure 30 days after the transplantation. Moreover, a lot of epithelial gland tissue and Ki67 positive cells were detected. Immunohistochemical analyses showed that the regenerated tissues have a normal response to ovarian hormone for pregnancy. The subsequent pregnancy test after 30 days transplantation revealed successful pregnancy for both the SDS and HHP groups. These findings indicate that the decellularized matrix from the uterine tissue can be a potential scaffold for uterine regeneration.
References
[1]
Boivin J, Bunting L, Collins JA, Nygren KG (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22: 1506–1512. doi: 10.1093/humrep/dem046
Chatterjee S, Gon CR, Dey S, Poddar V (2010) Minor tubal defects – The unnoticed causes of unexplained infertility. J Obstet Gynaecol India 60: 331–336. doi: 10.1007/s13224-010-0037-9
[6]
Bulun SE (2009) Endometriosis. N Engl J Med 360: 268–279. doi: 10.1056/nejmra0804690
[7]
Zanatta A, Rocha AM, Carvalho FM, Pereira RM, Taylor HS, et al. (2010) The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J Assist Reprod Genet 27: 701–710. doi: 10.1007/s10815-010-9471-y
Hassan MA, Lavery SA, Trew GH (2010) Congenital uterine anomalies and their impact on fertility. Womens Health (Lond Engl) 6: 443–461. doi: 10.2217/whe.10.19
[11]
Peter RB (2003) Gestational surrogacy. Human Reproduction Update 9: 483–491. doi: 10.1093/humupd/dmg033
[12]
Br?nnstr?m M, Diaz-Garcia C, Hanafy A, Olausson M, Tzakis A (2012) Uterus transplantation: animal research and human possibilities. Fertil Steril 97: 1269–1276. doi: 10.1016/j.fertnstert.2012.04.001
[13]
Ozkan O, Erman Akar M, Ozkan O, Erdogan O, Hadimioglu N, et al. (2013) Preliminary results of the first human uterus transplantation from a multiorgan donor. Fertil Steril 99: 470–476. doi: 10.1016/j.fertnstert.2012.09.035
[14]
Erman Akar M, Ozkan O, Aydinuraz B, Dirican K, Cincik M, et al. (2013) Clinical pregnancy after uterus transplantation. Fertil Steril 100: 1358–1363. doi: 10.1016/j.fertnstert.2013.06.027
[15]
Catsanos R, Rogers W, Lotz M (2013) The ethics of uterus transplantation. Bioethics 27: 65–73. doi: 10.1111/j.1467-8519.2011.01897.x
[16]
Kisu I, Mihara M, Banno K, Umene K, Araki K, et al. (2013) Risks for donors in uterus transplantation. Reprod Sci 20: 1406–1415. doi: 10.1177/1933719113493517
[17]
Erman Akar M, Ozkan M, Erdogan O, Ozkan O, Hadimioglu N (2013) Uterus transplantation from a deceased donor. Fertil Steril 100: e41. doi: 10.1016/j.fertnstert.2013.06.041
[18]
Li X, Sun H, Lin N, Hou X, Wang J, et al. (2011) Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials 32: 8172–8181. doi: 10.1016/j.biomaterials.2011.07.050
[19]
Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16: 2207–2216. doi: 10.1089/ten.tea.2009.0602
[20]
Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, et al. (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33: 7756–7764. doi: 10.1016/j.biomaterials.2012.07.023
[21]
Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, et al. (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14: 213–221. doi: 10.1038/nm1684
[22]
Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, et al. (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17: 915–926. doi: 10.1089/ten.tec.2011.0210
[23]
Negishi J, Funamoto S, Kimura T, Nam K, Higami T, et al. (2011) Effect of treatment temperature on collagen structures of the decellularized carotid artery using high hydrostatic pressure. J Artif Organs 14: 223–231. doi: 10.1007/s10047-011-0570-z
[24]
Negishi J, Funamoto S, Kimura T, Nam K, Higami T, et al. (2012) Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med doi: 10.1002/term.1662.
[25]
Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 26: 7339–7349. doi: 10.1016/j.biomaterials.2005.05.066
[26]
Hashimoto Y, Funamoto S, Kimura T, Nam K, Fujisato T, et al. (2011) The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32: 7060–7067. doi: 10.1016/j.biomaterials.2011.06.008
[27]
Sasaki S, Funamoto S, Hashimoto Y, Kimura A, Honda T, et al. (2009) In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis 15: 2022–2028.
[28]
Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, et al. (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11: 457–462.
[29]
Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, et al. (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31: 3590–3595. doi: 10.1016/j.biomaterials.2010.01.073
[30]
Bader A, Schilling T, Teebken OE, Brandes G, Herden T, et al. (1998) Tissue engineering of heart valves – human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14: 279–284. doi: 10.1016/s1010-7940(98)00171-7
[31]
Furukawa KS, Imura K, Tateishi T, Ushida T (2008) Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol 133: 134–145. doi: 10.1016/j.jbiotec.2007.07.957
[32]
Jonkman MF, Kauer FM, Nieuwenhuis P, Molenaar I (1986) Segmental uterine horn replacement in the rat using a biodegradable microporous synthetic tube. Artif Organs 10: 475–480. doi: 10.1111/j.1525-1594.1986.tb02607.x
[33]
Taveau JW, Tartaglia M, Buchannan D, Smith B, Koenig G, et al. (2004) Regeneration of uterine horn using porcine small intestinal submucosa grafts in rabbits. J Invest Surg 17: 81–92. doi: 10.1080/08941930490422456