全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Do Epigenetic Events Take Place in the Vastus Lateralis of Patients with Mild Chronic Obstructive Pulmonary Disease?

DOI: 10.1371/journal.pone.0102296

Full-Text   Cite this paper   Add to My Lib

Abstract:

Muscle dysfunction is a major comorbidity in Chronic Obstructive Pulmonary Disease (COPD). Several biological mechanisms including epigenetic events regulate muscle mass and function in models of muscle atrophy. Investigations conducted so far have focused on the elucidation of biological mechanisms involved in muscle dysfunction in advanced COPD. We assessed whether the epigenetic profile may be altered in the vastus lateralis of patients with mild COPD, normal body composition, and mildly impaired muscle function and exercise capacity. In vastus lateralis (VL) of mild COPD patients with well-preserved body composition and in healthy age-matched controls, expression of DNA methylation, muscle-enriched microRNAs, histone acetyltransferases (HTAs) and deacetylases (HDACs), protein acetylation, small ubiquitin-related modifier (SUMO) ligases, and muscle structure were explored. All subjects were clinically evaluated. Compared to healthy controls, in the VL of mild COPD patients, muscle function and exercise capacity were moderately reduced, DNA methylation levels did not differ, miR-1 expression levels were increased and positively correlated with both forced expiratory volume in one second (FEV1) and quadriceps force, HDAC4 protein levels were increased, and muscle fiber types and sizes were not different. Moderate skeletal muscle dysfunction is a relevant feature in patients with mild COPD and preserved body composition. Several epigenetic events are differentially expressed in the limb muscles of these patients, probably as an attempt to counterbalance the underlying mechanisms that alter muscle function and mass. The study of patients at early stages of their disease is of interest as they are a target for timely therapeutic interventions that may slow down the course of the disease and prevent the deleterious effects of major comorbidities.

References

[1]  Marquis K, Debigare R, Lacasse Y, LeBlanc P, Jobin J, et al. (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 809–813. doi: 10.1164/rccm.2107031
[2]  Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, et al. (2010) The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J 36: 81–88 09031936.00104909 [pii];10.1183/09031936.00104909 [doi].
[3]  Slot IG, van den Borst B, Hellwig VA, Barreiro E, Schols AM, et al. (2014) The Muscle Oxidative Regulatory Response to Acute Exercise Is Not Impaired in Less Advanced COPD Despite a Decreased Oxidative Phenotype. PLoS One 9: e90150 10.1371/journal.pone.0090150 [doi];PONE-D-13-41230 [pii].
[4]  van den Borst B, Slot IG, Hellwig VA, Vosse BA, Kelders MC, et al. (2013) Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD. J Appl Physiol (1985) 114: 1319–1328 japplphysiol.00508.2012 [pii];10.1152/japplphysiol.00508.2012 [doi].
[5]  Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, et al. (2005) Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171: 1116–1124 200407-887OC [pii];10.1164/rccm.200407-887OC [doi].
[6]  Barreiro E, Schols AM, Polkey MI, Galdiz JB, Gosker HR, et al. (2008) Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax 63: 100–107. doi: 10.1136/thx.2007.078030
[7]  Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, et al. (2010) Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med 182: 477–488. doi: 10.1164/rccm.200908-1220oc
[8]  Couillard A, Maltais F, Saey D, Debigare R, Michaud A, et al. (2003) Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167: 1664–1669. doi: 10.1164/rccm.200209-1028oc
[9]  Doucet M, Russell AP, Leger B, Debigare R, Joanisse DR, et al. (2007) Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176: 261–269. doi: 10.1164/rccm.200605-704oc
[10]  Fermoselle C, Rabinovich R, Ausin P, Puig-Vilanova E, Coronell C, et al. (2012) Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur Respir J 40: 851–862 09031936.00137211 [pii];10.1183/09031936.00137211 [doi].
[11]  Gea J, Agusti A, Roca J (2013) Pathophysiology of muscle dysfunction in COPD. J Appl Physiol 114: 1222–1234 japplphysiol.00981.2012 [pii];10.1152/japplphysiol.00981.2012 [doi].
[12]  Puente-Maestu L, Lazaro A, Tejedor A, Camano S, Fuentes M, et al. (2011) Effects of exercise on mitochondrial DNA content in skeletal muscle of patients with COPD. Thorax 66: 121–127 thx.2010.153031 [pii];10.1136/thx.2010.153031 [doi].
[13]  Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, et al. (2014) An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 189: e15–e62 10.1164/rccm.201402-0373ST [doi].
[14]  Gayan-Ramirez G, Decramer M (2013) Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol 114: 1291–1299 japplphysiol.00847.2012 [pii];10.1152/japplphysiol.00847.2012 [doi].
[15]  Hussain SN, Sandri M (2013) Role of autophagy in COPD skeletal muscle dysfunction. J Appl Physiol 114: 1273–1281 japplphysiol.00893.2012 [pii];10.1152/japplphysiol.00893.2012 [doi].
[16]  Puente-Maestu L, Lazaro A, Humanes B (2013) Metabolic derangements in COPD muscle dysfunction. J Appl Physiol 114: 1282–1290 japplphysiol.00815.2012 [pii];10.1152/japplphysiol.00815.2012 [doi].
[17]  Sancho-Munoz A, Trampal C, Pascual S, Martinez-Llorens J, Chalela R, et al. (2013) Muscle Glucose Metabolism in Chronic Obstructive Pulmonary Disease Patients. Arch Bronconeumol S0300-2896(13)00344-X [pii];10.1016/j.arbres.2013.10.011 [doi].
[18]  Barreiro E, Sznajder JI (2013) Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. J Appl Physiol 114: 1263–1272 japplphysiol.01027.2012 [pii];10.1152/japplphysiol.01027.2012 [doi].
[19]  Donaldson A, Natanek SA, Lewis A, Man WD, Hopkinson NS, et al. (2013) Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 68: 1140–1149 thoraxjnl-2012-203129 [pii];10.1136/thoraxjnl-2012-203129 [doi].
[20]  Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD, et al. (2012) Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 67: 26–34 thoraxjnl-2011-200309 [pii];10.1136/thoraxjnl-2011-200309 [doi].
[21]  Natanek SA, Riddoch-Contreras J, Marsh GS, Hopkinson NS, Man WD, et al. (2011) Yin Yang 1 expression and localisation in quadriceps muscle in COPD. Arch Bronconeumol 47: 296–302 S0300-2896(11)00090-1 [pii];10.1016/j.arbres.2011.02.015 [doi].
[22]  McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102: 306–313 00932.2006 [pii];10.1152/japplphysiol.00932.2006 [doi].
[23]  McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE (2009) Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39: 219–226 00042.2009 [pii];10.1152/physiolgenomics.00042.2009 [doi].
[24]  Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, et al. (2006) MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 350: 1006–1012 S0006-291X(06)02195-4 [pii];10.1016/j.bbrc.2006.09.153 [doi].
[25]  Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, et al. (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 117: 2459–2467 10.1172/JCI31960 [doi].
[26]  Wang L, Zhou L, Jiang P, Lu L, Chen X, et al. (2012) Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther 20: 1222–1233 mt201235 [pii];10.1038/mt.2012.35 [doi].
[27]  Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17: 771–779 0092-8674(79)90317-9 [pii]. doi: 10.1016/0092-8674(79)90317-9
[28]  Alamdari N, Smith IJ, Aversa Z, Hasselgren PO (2010) Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299: R509–R520 ajpregu.00858.2009 [pii];10.1152/ajpregu.00858.2009 [doi].
[29]  Alamdari N, Aversa Z, Castillero E, Hasselgren PO (2013) Acetylation and deacetylation–novel factors in muscle wasting. Metabolism 62: 1–11 S0026-0495(12)00121-7 [pii];10.1016/j.metabol.2012.03.019 [doi].
[30]  Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, et al. (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25: 151–159 S1097-2765(06)00844-6 [pii];10.1016/j.molcel.2006.12.008 [doi].
[31]  Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, et al. (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21: 8035–8044 10.1128/MCB.21.23.8035-8044.2001 [doi].
[32]  Andreou AM, Tavernarakis N (2009) SUMOylation and cell signalling. Biotechnol J 4: 1740–1752 10.1002/biot.200900219 [doi].
[33]  Kudryashova E, Kramerova I, Spencer MJ (2012) Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J Clin Invest 122: 1764–1776 59581 [pii];10.1172/JCI59581 [doi].
[34]  Miravitlles M, Soler-Cataluna JJ, Calle M, Molina J, Almagro P, et al. (2012) Spanish COPD Guidelines (GesEPOC): pharmacological treatment of stable COPD. Spanish Society of Pulmonology and Thoracic Surgery. Arch Bronconeumol 48: 247–257 S0300-2896(12)00115-9 [pii];10.1016/j.arbres.2012.04.001 [doi].
[35]  Miravitlles M, Calle M, Soler-Cataluna JJ (2012) Clinical phenotypes of COPD: identification, definition and implications for guidelines. Arch Bronconeumol 48: 86–98 S0300-2896(11)00342-5 [pii];10.1016/j.arbres.2011.10.007 [doi].
[36]  Miravitlles M, Soler-Cataluna JJ, Calle M, Molina J, Almagro P, et al. (2014) Spanish Guideline for COPD (GesEPOC). Update 2014. Arch Bronconeumol 50 Suppl 1: 1–16 S0300-2896(14)70070-5 [pii];10.1016/S0300-2896(14)70070-5 [doi].
[37]  Rieger-Reyes C, Garcia-Tirado FJ, Rubio-Galan FJ, Marin-Trigo JM (2013) Classification of Chronic Obstructive Pulmonary Disease Severity According to the New Global Initiative for Chronic Obstructive Lung Disease 2011 Guidelines: COPD Assessment Test Versus Modified Medical Research Council Scale. Arch Bronconeumol S0300-2896(13)00306-2 [pii];10.1016/j.arbres.2013.09.014 [doi].
[38]  Roca J, Sanchis J, Agusti-Vidal A, Segarra F, Navajas D, et al. (1986) Spirometric reference values from a Mediterranean population. Bull Eur Physiopathol Respir 22: 217–224.
[39]  Roca J, Rodriguez-Roisin R, Cobo E, Burgos F, Perez J, et al. (1990) Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population. Am Rev Respir Dis 141: 1026–1032. doi: 10.1164/ajrccm/141.4_pt_1.1026
[40]  Roca J, Burgos F, Barbera JA, Sunyer J, Rodriguez-Roisin R, et al. (1998) Prediction equations for plethysmographic lung volumes. Respir Med 92: 454–460. doi: 10.1016/s0954-6111(98)90291-8
[41]  Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, et al. (2007) Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 62: 115–120. doi: 10.1136/thx.2006.062026
[42]  Andreu AL, Martinez R, Marti R, Garcia-Arumi E (2009) Quantification of mitochondrial DNA copy number: pre-analytical factors. Mitochondrion 9: 242–246 S1567-7249(09)00039-7 [pii];10.1016/j.mito.2009.02.006 [doi].
[43]  Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al GA, et al. (2014) SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer 10.1002/ijc.28913 [doi].
[44]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408 10.1006/meth.2001.1262 [doi];S1046-2023(01)91262-9 [pii].
[45]  Barreiro E, Rabinovich R, Marin-Corral J, Barbera JA, Gea J, et al. (2009) Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax 64: 13–19. doi: 10.1136/thx.2008.105163
[46]  Marin-Corral J, Minguella J, Ramirez-Sarmiento AL, Hussain SN, Gea J, et al. (2009) Oxidised proteins and superoxide anion production in the diaphragm of severe COPD patients. Eur Respir J 33: 1309–1319. doi: 10.1183/09031936.00072008
[47]  Barreiro E, Ferrer D, Sanchez F, Minguella J, Marin-Corral J, et al. (2011) Inflammatory cells and apoptosis in respiratory and limb muscles of patients with COPD. J Appl Physiol 111: 808–817 japplphysiol.01017.2010 [pii];10.1152/japplphysiol.01017.2010 [doi].
[48]  Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, et al. (2004) Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 169: 1022–1027. doi: 10.1164/rccm.200310-1465oc
[49]  Ortega F, Toral J, Cejudo P, Villagomez R, Sanchez H, et al. (2002) Comparison of effects of strength and endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 669–674 10.1164/rccm.2107081 [doi].
[50]  Shrikrishna D, Patel M, Tanner RJ, Seymour JM, Connolly BA, et al. (2012) Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J 40: 1115–1122 09031936.00170111 [pii];10.1183/09031936.00170111 [doi].
[51]  Gagnon P, Lemire BB, Dube A, Saey D, Porlier A, et al. (2014) Preserved function and reduced angiogenesis potential of the quadriceps in patients with mild COPD. Respir Res 15: 4 1465-9921-15-4 [pii];10.1186/1465-9921-15-4 [doi].
[52]  Perdiguero E, Sousa-Victor P, Ballestar E, Munoz-Canoves P (2009) Epigenetic regulation of myogenesis. Epigenetics 4: 541–550 10258 [pii]. doi: 10.4161/epi.4.8.10258
[53]  Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, et al. (2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120: 2377–2385 CIRCULATIONAHA.109.879429 [pii];10.1161/CIRCULATIONAHA.109.879429 [doi].
[54]  Sadoul K, Boyault C, Pabion M, Khochbin S (2008) Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90: 306–312 S0300-9084(07)00168-X [pii];10.1016/j.biochi.2007.06.009 [doi].
[55]  Schakman O, Gilson H, Kalista S, Thissen JP (2009) Mechanisms of muscle atrophy induced by glucocorticoids. Horm Res 72 Suppl 1: 36–41 000229762 [pii];10.1159/000229762 [doi].
[56]  Rodriguez DA, Kalko S, Puig-Vilanova E, Perez-Olabarria M, Falciani F, et al. (2012) Muscle and blood redox status after exercise training in severe COPD patients. Free Radic Biol Med 52: 88–94. doi: 10.1016/j.freeradbiomed.2011.09.022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133