全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Conserved Arginines of Bovine Adenovirus-3 33K Protein Are Important for Transportin-3 Mediated Transport and Virus Replication

DOI: 10.1371/journal.pone.0101216

Full-Text   Cite this paper   Add to My Lib

Abstract:

The L6 region of bovine adenovirus (BAdV)-3 encodes a spliced protein designated 33K. The 33K specific sera detected five major proteins and three minor proteins in transfected or virus infected cells, which could arise by internal initiation of translation and alternative splicing. The 33K protein is predominantly localized to the nucleus of BAdV-3 infected cells. The 33K nuclear transport utilizes both classical importin-α/-β and importin-β dependent nuclear import pathways and preferentially binds to importin-α5 and transportin-3 receptors, respectively. Analysis of mutant 33K proteins demonstrated that amino acids 201–240 of the conserved C-terminus of 33K containing RS repeat are required for nuclear localization and, binding to both importin-α5 and transportin-3 receptors. Interestingly, the arginine residues of conserved RS repeat are required for binding to transportin-3 receptor but not to importin-α5 receptor. Moreover, mutation of arginines residues of RS repeat proved lethal for production of progeny virus. Our results suggest that arginines of RS repeat are required for efficient nuclear transport of 33K mediated by transportin-3, which appears to be essential for replication and production of infectious virion.

References

[1]  Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, et al. (2007) Classical nuclear localization signals: Definition, function and interaction with importin -α. J Biol Chem 282: 5101–5105. doi: 10.1074/jbc.r600026200
[2]  Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60: 1659–1688. doi: 10.1007/s00018-003-3070-3
[3]  Fassati A, Gorlich D, Harrison I, Zaytseva L, Mingot JM (2003) Nuclear import of HIC-1 intracellular reverse transcription complexs is mediated by importin 7. EMBO J 22: 3675–3685. doi: 10.1093/emboj/cdg357
[4]  Wodrich HA, Cassany, D'Angelo MA, Guan T, Nemerow G, et al. (2006) Adenovirus core protein pVII is translocated into nucleus by multiple import receptor pathways. J Virol 80: 9608–9618. doi: 10.1128/jvi.00850-06
[5]  Hindley CE, Lawrence FJ, Mathews DA (2007) A role for transportin in the nuclear import of adenovirus core proteins and DNA. Traffic 8: 1313–1322. doi: 10.1111/j.1600-0854.2007.00618.x
[6]  Levin A, Hayouka Z, Friedler A, Loyter A (2010) Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus 15: 422–431.
[7]  Reddy PS, Idamakanti N, Zakhartchouk AN, Baxi MK, Lee JB, et al. (1998) Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J Virol 72: 1394–1402.
[8]  Kulshreshtha V (2009). Molecular characterization of 33K protein of bovine adenovirus-3. PhD Thesis. University of Saskatchewan, Saskatoon, SK Canada.
[9]  Ali H, Leroy G, Bridge G, Flint SJ (2007) The adenoviral L4 33 kDa protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 81: 1327–1338. doi: 10.1128/jvi.01584-06
[10]  Ewing SG, Byrd SA, Christensen JB, Tyler RE, Imperiale MJ (2007) Ternary Complex Formation on the Adenovirus Packaging Sequence by the IVa2 and L4 22-Kilodalton Proteins. J Virol 81: 12450–12457. doi: 10.1128/jvi.01470-07
[11]  Farley DC, Brown JL, Leppard KN (2004) Activation of the early-late switch in adenovirus type 5 major late transcription unit expression by L4 gene products. J Virol 78: 1782–1791. doi: 10.1128/jvi.78.4.1782-1791.2004
[12]  Ostapchuk P, Anderson ME, Chandrasekhar S, Hearing P (2006) The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. J Virol 80: 6973–6981. doi: 10.1128/jvi.00123-06
[13]  Guimet D, Hearing P (2013) The adenovirus L4-22K protein has distinct functions in post transcriptional regulation of gene expression and encapsidation of the viral genome. J Virol 87: 7688–7699. doi: 10.1128/jvi.00859-13
[14]  Wu K, Guimet D, Hearing P (2013) The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging. J Virol 87: 6739–6747. doi: 10.1128/jvi.00652-13
[15]  Kulshreshtha V, Babiuk LA, Tikoo SK (2004) Role of bovine adenovirus-3 33K protein in viral replication. Virology 323: 59–69. doi: 10.1016/j.virol.2004.02.024
[16]  Kulshreshtha V, Tikoo SK (2008) Interaction of bovine adenovirus-3 33K protein with other viral proteins. Virology 381: 29–35. doi: 10.1016/j.virol.2008.08.015
[17]  Du E, Tikoo SK (2010) Efficient replication and generation of recombinant bovine adenovirus-3 in nonbovine cotton rat lung cells expressing I-SceI endonuclease. J Gene Med 12: 840–847. doi: 10.1002/jgm.1505
[18]  Reddy PS, Idamakanti N, Chen Y, Whale T, Babiuk LA, et al. (1999) Replication-defective bovine adenovirus type 3 as an expression vector. J Virol 73: 9137–9144.
[19]  Lai M-C, Lin R-I, Tarn W-Y (2001) Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc Natl Acad Sci 98: 10154–10159. doi: 10.1073/pnas.181354098
[20]  Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R (2008) Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim Biophys Acta 1783: 394–404. doi: 10.1016/j.bbamcr.2007.12.006
[21]  Tachibana T, Hieda M, Miyamoto Y, Kose S, Imamoto N, et al. (2002) Recycling of importin alpha from the nucleus is suppressed by loss of RCC1 function in living mammalian cells. Cell Struct Funct 25: 115–123. doi: 10.1247/csf.25.115
[22]  Yokoya F, Imamoto N, Tachibana T, Yoneda Y (1999) Beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 10: 1119–1131. doi: 10.1091/mbc.10.4.1119
[23]  Paterson CP, Ayalew LA, Tikoo SK (2012) Mapping of nuclear import signal and importin α binding regions of 52K protein of bovine adenovirus-3. Virology 432: 63–72. doi: 10.1016/j.virol.2012.05.021
[24]  G?rlich D, Henklein P, Laskey RA, Hartmann E (1996) A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 15: 1810–1817.
[25]  Jakel S, Gorlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammals. EMBO J 17: 4491–4502. doi: 10.1093/emboj/17.15.4491
[26]  Welch K, Franke J, Kohler M, Macara IG (1999) RanBP3 contains an unusual nuclear localization signal that is imported preferentially by importin-α3. Mol Cellular Biol 19: 8400–8411.
[27]  G?rlich D, Kraft R, Kostka S, Vogel F, Hartmann E, et al. (1996) Importin provides a link between nuclear protein import and U snRNA export. Cell 87: 21–32. doi: 10.1016/s0092-8674(00)81319-7
[28]  Imamoto N, Tachibana T, Matsubae M, Yoneda Y (1995) A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J Biol Chem 270: 8559–8565. doi: 10.1074/jbc.270.15.8559
[29]  Friedrich B, Quensel C, Sommer T, Hartmann E, Kohler M (2006) Nuclear localization signal and protein context both mediate importin alpha specificity of nuclear import substrates. Mol Cell Biol 26: 8697–8709. doi: 10.1128/mcb.00708-06
[30]  Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, et al. (2003) Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 278: 28193–28200. doi: 10.1074/jbc.m303571200
[31]  Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol111: 807–816. doi: 10.1083/jcb.111.3.807
[32]  Wu QC, Kulshreshtha V, Tikoo SK (2004) Characterization and nuclear localization of the fiber protein encoded by the late region 7 of bovine adenovirus type 3. Arch virology 149: 1783–1799. doi: 10.1007/s00705-004-0323-x
[33]  Hedley ML, Amrein H, Maniatis T (1995) An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Proc Natl Acad Sci 92: 11524–11528. doi: 10.1073/pnas.92.25.11524
[34]  K?hler M, Speck C, Christiansen M, Bischoff FR, Prehn S, et al. (1999) Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol 19: 7782–7791.
[35]  Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, et al. (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 70: 4805–4610.
[36]  Tormanen H, Backstrom E, Carlsson A, Akusjarvi G (2006) L4-33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem 281: 36510–36517. doi: 10.1074/jbc.m607601200
[37]  Pante N, Aebi U (1996) Towards the molecular dissection of protein import into nuclei. Curr Opin Cell Biol 8: 397–406. doi: 10.1016/s0955-0674(96)80016-0
[38]  Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR (1997) Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol 138: 225–238. doi: 10.1083/jcb.138.2.225
[39]  Cazalla D, Zhu J, Manche L, Huber E, Krainer AR, et al. (2002) Nuclear export and retention signals in the RS domain of SR proteins. Mol Cell Biol 22: 6871–6882. doi: 10.1128/mcb.22.19.6871-6882.2002
[40]  Hamelberg D, Shen T, McCammon JA (2007) A proposed signaling motif for nuclear import in mRNA processing via the formation of arginine claw. Proc Natl Acad Sci 104: 14947–14951. doi: 10.1073/pnas.0703151104
[41]  Ostberg S, Persson HT, Akusjarvi G (2012) Serine 192 in the tiny RS repeat of the adenoviriral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers. Virology 433: 273–281. doi: 10.1016/j.virol.2012.08.021
[42]  Arnold MA, Nath A, Hauber J, Kehlenbach RH (2006) Multiple importins function as nuclear transport receptors for the rev protein of human immunodeficiency virus type 1. J Biol Chem 281: 20883–20890. doi: 10.1074/jbc.m602189200
[43]  Finnen RL, Biddle JF, Flint J (2001) Truncation of the human adenovirus type 5 L4 33 kDa protein: Evidence for an essential role of carboxy-terminus in the viral infectious cycle. Virology 289: 388–399. doi: 10.1006/viro.2001.1130
[44]  Wu K, Orozco D, Hearing P (2012) The adenovirus L4-22K protein is multifunctional and is integral component of crucial aspects of infection. J Virol 86: 10474–10483. doi: 10.1128/jvi.01463-12
[45]  Zakhartchouk AN, Reddy PS, Baxi M, Baca-Estrada M, Mehtali M, et al. (1998) Construction and characterization of E3-deleted bovine adenovirus type 3 expressing full length and truncated form of bovine herpesvirus type 1 glycoprotein gD. Virology 250: 220–229. doi: 10.1006/viro.1998.9351

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133