The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.
References
[1]
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104: 13780–13785 0706625104 [pii];10.1073/pnas.0706625104 [doi].
[2]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031 nature05414 [pii];10.1038/nature05414 [doi].
[3]
Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H, et al. (2011) Gut microbiota of healthy and malnourished children in bangladesh. Front Microbiol 2: 228 10.3389/fmicb.2011.00228 [doi].
[4]
Bahl MI, Bergstrom A, Licht TR (2012) Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett 329: 193–197. doi: 10.1111/j.1574-6968.2012.02523.x
[5]
Cardona S, Eck A, Cassellas M, Gallart M, Alastrue C, et al. (2012) Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol 12: 158. doi: 10.1186/1471-2180-12-158
[6]
Roesch LF, Casella G, Simell O, Krischer J, Wasserfall CH, et al. (2009) Influence of fecal sample storage on bacterial community diversity. Open Microbiol J 3: 40–46 10.2174/1874285800903010040 [doi].
[7]
Cuiv O, Aguirre de CD, Jones M, Klaassens ES, Worthley DL, et al. (2011) The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microb Ecol 61: 353–362 10.1007/s00248-010-9771-x [doi].
[8]
Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L, et al. (2012) Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One 7: e32545 10.1371/journal.pone.0032545 [doi];PONE-D-11-17045 [pii].
[9]
Sloan LM, Uhl JR, Vetter EA, Schleck CD, Harmsen WS, et al. (2004) Comparison of the Roche LightCycler vanA/vanB detection assay and culture for detection of vancomycin-resistant enterococci from perianal swabs. J Clin Microbiol 42: 2636–2643 10.1128/JCM.42.6.2636-2643.2004 [doi];42/6/2636 [pii].
[10]
Syed SA, Loesche WJ (1972) Survival of human dental plaque flora in various transport media. Appl Microbiol 24: 638–644.
[11]
Budding AE, Grasman ME, Lin F, Bogaards JA, Soeltan-Kaersenhout DJ, et al. (2010) IS-pro: high-throughput molecular fingerprinting of the intestinal microbiota. FASEB J 24: 4556–4564 fj.10-156190 [pii];10.1096/fj.10-156190 [doi].
[12]
Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, et al. (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7: 1092–1101 ismej201310 [pii];10.1038/ismej.2013.10 [doi].
[13]
Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, et al. (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81: 127–134 S0167-7012(10)00066-7 [pii];10.1016/j.mimet.2010.02.007 [doi].
[14]
Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307: 80–86. doi: 10.1111/j.1574-6968.2010.01965.x
[15]
Nylund L, Heilig HG, Salminen S, de Vos WM, Satokari R (2010) Semi-automated extraction of microbial DNA from feces for qPCR and phylogenetic microarray analysis. J Microbiol Methods 83: 231–235 S0167-7012(10)00307-6 [pii];10.1016/j.mimet.2010.09.003 [doi].
[16]
Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7: e39743. doi: 10.1371/journal.pone.0039743