全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Probing the In Vitro Cytotoxicity of the Veterinary Drug Oxytetracycline

DOI: 10.1371/journal.pone.0102334

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study investigated the effect of oxytetracycline (OTC) on the anti-oxidative defense system, the structure (hemolysis rate and morphology) and function (ATP enzyme activity) of human red blood cells (hRBCs) to investigate the possible toxic mechanism of OTC to hRBCs. The experimental results indicate that OTC can cause a decline in the function of the antioxidant defense system of hRBCs, resulting in oxidative stress. OTC can bring about morphological changes to hRBCs, and further leads to hemolysis, when the concentration of OTC is over 8×10?5 M (about 164 μg/ml). At a low OTC concentration, below 4×10?5 M (82 μg/ml), OTC can enhance the activity of ATP enzyme of hRBCs, known as hormesis. However, at a high concentration, above 4×10?5 M (about 82 μg/ml), the ATP enzymatic activity was inhibited, affecting the function of hRBCs. The estalished mechanism of toxicity of OTC to hRBCs can facilitate a deeper understanding of the toxicity of OTC in vivo.

References

[1]  Boleas S, Alonso C, Pro J, Fernandez C, Carbonell G, et al. (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS.3) and influence of manure co-addition. J Hazard Mater 122: 233–241. doi: 10.1016/j.jhazmat.2005.03.003
[2]  Ferreira CS, Nunes BA, Henriques-Almeida JM, Guilhermino L (2007) Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol Environ Saf 67: 452–458. doi: 10.1016/j.ecoenv.2006.10.006
[3]  Rigos G, Nengas I, Alexis M, Troisi GM (2004) Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms. Aquat Toxicol 69: 281–288. doi: 10.1016/j.aquatox.2004.05.009
[4]  Doi AM, Stoskopf MK, Lewbart GA (1998) Pharmacokinetics of oxytetracycline in the red pacu (Colossoma brachypomum) following different routes of administration. J Vet Pharmacol Ther 21: 364–368. doi: 10.1046/j.1365-2885.1998.00162.x
[5]  Brentnall C, Cheng Z, McKellar QA, Lees P (2013) Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves. Res Vet Sci 94: 687–694. doi: 10.1016/j.rvsc.2013.01.012
[6]  Girardi C, Re G, Farca AM, Dacasto M, Ferrero E, et al. (1990) Blood kinetics of sulfamonomethoxine and oxytetracycline following intrauterine spray injection in dairy cows. Pharmacol Res 22: 79–86. doi: 10.1016/1043-6618(90)90703-g
[7]  Reja A, Moreno L, Serrano JM, Santiago D, Soler F (1996) Concentration-time profiles of oxytetracycline in blood, kidney and liver of tench (Tinca tinca L) after intramuscular administration. Vet Hum Toxicol 38: 344–347.
[8]  Nouws JF, Vree TB (1983) Effect of injection site on the bioavailability of an oxytetracycline formulation in ruminant calves. Vet Quart 5: 165–170. doi: 10.1080/01652176.1983.9693891
[9]  Uno K (1996) Pharmacokinetic study of oxytetracycline in healthy and vibriosis-infected ayu (Plecoglossus altivelis). Aquaculture 143: 33–42. doi: 10.1016/0044-8486(95)01225-7
[10]  Roncada P, Ermini L, Schleuning A, Stracciari GL, Strocchia A (2000) Pharmacokinetics and residual behaviour in milk of oxytetracycline in cows following administration of uterine pessaries. J Vet Pharmacol Ther 23: 281–285. doi: 10.1046/j.1365-2885.2000.00260.x
[11]  Sun Y, Peng Y, Aksornkoae N, Johnson JR, Boring JG, et al. (2002) Controlled release of oxytetracycline in sheep. J Control Release 85: 125–134. doi: 10.1016/s0168-3659(02)00286-9
[12]  Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, et al. (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147: 187–193. doi: 10.1016/j.envpol.2006.08.016
[13]  Ye Z, Weinberg HS, Meyer MT (2007) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal Chem 79: 1135–1144. doi: 10.1021/ac060972a
[14]  Blobel H, Burch CW (1960) Oxytetracycline concentrations in blood serums and milk secretions of cows following intravenous or intramammary treatment. Jour Amer Vet Med Assoc 137: 701–704.
[15]  Dinsmore RP, Stevens RD, Cattell MB, Salman MD, Sundlof SF (1996) Oxytetracycline residues in milk after intrauterine treatment of cows with retained fetal membranes. J Am Vet Med Assoc 209: 1753–1755.
[16]  Virolainen N, Pikkemaat M, Elferink J, Karp M (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J Agric Food Chem 56: 11065–11070. doi: 10.1021/jf801797z
[17]  Gabler WL (1991) Fluxes and accumulation of tetracyclines by human blood cells. Res Commun Chem Pathol Pharmacol 72: 39–51.
[18]  Loke ML, Jespersen S, Vreeken R, Halling-Sorensen B, Tjornelund J (2003) Determination of oxytetracycline and its degradation products by high-performance liquid chromatography-tandem mass spectrometry in manure-containing anaerobic test systems. J Chromatogr B Analyt Technol Biomed Life Sci 783: 11–23. doi: 10.1016/s1570-0232(02)00468-3
[19]  Mamani MCV, Reyes FGR, Rath S (2009) Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem 117: 545–552. doi: 10.1016/j.foodchem.2009.04.032
[20]  Jiao S, Zheng S, Yin D, Wang L, Chen L (2008) Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J Environ Sci (China) 20: 806–813. doi: 10.1016/s1001-0742(08)62130-0
[21]  Li K, Yediler A, Yang M, Schulte-Hostede S, Wong MH (2008) Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere 72: 473–478. doi: 10.1016/j.chemosphere.2008.02.008
[22]  Lunden T, Miettinen S, Lonnstrom LG, Lilius EM, Bylund G (1998) Influence of oxytetracycline and oxolinic acid on the immune response of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immun 8: 217–230. doi: 10.1006/fsim.1998.0142
[23]  Qu MM, Sun LW, Chen J, Li YQ, Chen YG, et al. (2004) Toxicological characters of arsanilic acid and oxytetracycline. J Agro-Environ Sci 23: 240–242.
[24]  Li ZL, Chen HG, Xu Y, Kong ZM (2006) Toxicological effects of three veterinary drugs and feed additives on fish. J Ecol Rural Environ 22: 84–86.
[25]  De Jonge HR (1973) Toxicity of tetracyclines in rat-small-intestinal epithelium and liver. Biochem Pharmacol 22: 2659–2677. doi: 10.1016/0006-2952(73)90127-5
[26]  Omoregie E, Oyebanji SM (2002) Oxytetracycline-induced blood disorder in juvenile Nile tilapia Oreochromis niloticus (Trewavas). J World Aquacult Soc 33: 377–382. doi: 10.1111/j.1749-7345.2002.tb00514.x
[27]  Hobusch D, Putzke HP (1971) Effect of oxytetracycline (OTC) on the secretion kinetics of the rat exocrine pancreas. Exp Pathol (Jena) 5: 298–307.
[28]  Lorenzo C, del Olmo Martinez ML, Pastor L, Almaraz A, Belmonte A, et al. (1999) Effects of oxytetracycline on the rat exocrine pancreas. Int J Pancreatol 26: 181–188. doi: 10.1385/ijgc:26:3:181
[29]  Wennmalm A, Benthin G, Petersson AS (1992) Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 106: 507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x
[30]  D'Alessandro A, Righetti PG, Zolla L (2009) The red blood cell proteome and interactome: an update. J Proteome Res 9: 144–163. doi: 10.1021/pr900831f
[31]  Selwyn MJ, Dawson AP, Stockdale M, Gains N (1970) Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem 14: 120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x
[32]  Herken H, Uz E, Ozyurt H, Sogut S, Virit O, et al. (2001) Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation ape increased in different forms of schizophrenia. Mol Psychiatr 6: 66–73. doi: 10.1038/sj.mp.4000789
[33]  Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, et al. (2000) Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 28: 1243–1248. doi: 10.1016/s0891-5849(00)00246-x
[34]  Xiong J, Hu S, Li J, He S, Feng L (2013) Influence of strong electric field on MDA and SOD of rice under atmosphere pressure. J Phys: Conf Ser 418: 1–7. doi: 10.1088/1742-6596/418/1/012141
[35]  Gao N, Li L, Shi Z, Zhang X, Jin W (2007) High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis 28: 3966–3975. doi: 10.1002/elps.200700124
[36]  Parmentier C, Wellman M, Nicolas A, Siest G, Leroy P (1999) Simultaneous measurement of reactive oxygen species and reduced glutathione using capillary electrophoresis and laser-induced fluorescence detection in cultured cell lines. Electrophoresis 20: 2938–2944. doi: 10.1002/(sici)1522-2683(19991001)20:14<2938::aid-elps2938>3.3.co;2-d
[37]  Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M (2010) How to study dendriplexes II: Transfection and cytotoxicity. J Control Release 141: 110–127. doi: 10.1016/j.jconrel.2009.09.030
[38]  Lin YS, Haynes CL (2010) Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J Am Chem Soc 132: 4834–4842. doi: 10.1021/ja910846q
[39]  Cantley LC Jr, Resh MD, Guidotti G (1978) Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 272: 552–554. doi: 10.1038/272552a0
[40]  Skou JC, Esmann M (1992) The Na,K-ATPase. J Bioenerg Biomembr 24: 249–261.
[41]  Ben Othmen L, Mechri A, Fendri C, Bost M, Chazot G, et al. (2008) Altered antioxidant defense system in clinically stable patients with schizophrenia and their unaffected siblings. Prog Neuropsychopharmacol Biol Psychiatry 32: 155–159. doi: 10.1016/j.pnpbp.2007.08.003
[42]  Mates JM, Segura JM, Perez-Gomez C, Rosado R, Olalla L, et al. (1999) Antioxidant enzymatic activities in human blood cells after an allergic reaction to pollen or house dust mite. Blood Cells Mol Dis 25: 103–109. doi: 10.1006/bcmd.1999.0234
[43]  Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17: 48–54. doi: 10.1016/j.tcm.2006.11.005
[44]  Wadsworth RM (2008) Oxidative stress and the endothelium. Exp Physiol 93: 155–157. doi: 10.1113/expphysiol.2007.038687
[45]  Roversi FM, Galdieri LC, Grego BH, Souza FG, Micheletti C, et al. (2006) Blood oxidative stress markers in Gaucher disease patients. Clin Chim Acta 364: 316–320. doi: 10.1016/j.cca.2005.07.022
[46]  Hachul de Campos H, Brandao LC, D'Almeida V, Grego BH, Bittencourt LR, et al. (2006) Sleep disturbances, oxidative stress and cardiovascular risk parameters in postmenopausal women complaining of insomnia. Climacteric 9: 312–319. doi: 10.1080/13697130600871947
[47]  Gokalp O, Uz E, Cicek E, Yilmaz HR, Ozer MK, et al. (2006) Ameliorating role of caffeic acid phenethyl ester (CAPE) against isoniazid-induced oxidative damage in red blood cells. Mol Cell Biochem 290: 55–59. doi: 10.1007/s11010-006-9157-z
[48]  Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75: 199–212. doi: 10.1007/s11746-998-0032-9
[49]  Das S, Vasisht S, Das SN, Srivastava LM (2000) Correlation between total antioxidant status and lipid peroxidation in hypercholesterolemia. Curr Sci India 78: 486–487.
[50]  Skaper SD, Fabris M, Ferrari V, Carbonare MD, Leon A (1997) Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: Cooperative effects of ascorbic acid. Free Radical Bio Med 22: 669–678. doi: 10.1016/s0891-5849(96)00383-8
[51]  Rother RP, Bell L, Hillmen P, Gladwin MT (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin - A novel mechanism of human disease. Jama-J Am Med Assoc 293: 1653–1662. doi: 10.1001/jama.293.13.1653
[52]  Hill A, Richards SJ, Hillmen P (2007) Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. Brit J Haematol 137: 181–192. doi: 10.1111/j.1365-2141.2007.06554.x
[53]  Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, et al. (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. New Engl J Med 355: 1233–1243. doi: 10.1056/nejmoa061648
[54]  Chi ZX, Liu RT, Yang BJ, Zhang H (2010) Toxic interaction mechanism between oxytetracycline and bovine hemoglobin. J Hazard Mater 180: 741–747. doi: 10.1016/j.jhazmat.2010.04.110
[55]  Manrique-Moreno M, Suwalsky M, Villena F, Garidel P (2010) Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models. Biophys Chem 147: 53–58. doi: 10.1016/j.bpc.2009.12.010
[56]  Hammer M, Schweitzer D, Michel B, Thamm E, Kolb A (1998) Single scattering by red blood cells. Appl Opt 37: 7410–7418. doi: 10.1364/ao.37.007410
[57]  Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing, II, et al (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5: 1366–1375. doi: 10.1021/nn103077k
[58]  Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A 71: 4457–4461. doi: 10.1073/pnas.71.11.4457
[59]  Suwalsky M, Novoa V, Villena F, Sotomayor CP, Aguilar LF, et al. (2009) Structural effects of Zn(2+) on cell membranes and molecular models. J Inorg Biochem 103: 797–804. doi: 10.1016/j.jinorgbio.2009.02.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133