Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
References
[1]
Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, et al. (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33: 483–495. doi: 10.1016/j.molcel.2009.01.011
[2]
Ma T, Chen Y, Zhang F, Yang CY, Wang S, et al. (2013) RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 49: 897–907. doi: 10.1016/j.molcel.2013.01.006
[3]
Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118: 83–97. doi: 10.1016/j.cell.2004.06.016
[4]
Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, et al. (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21: 257–264. doi: 10.1016/j.sbi.2011.01.003
[5]
Deshaies RJ, Emberley ED, Saha A (2010) Control of cullin-ring ubiquitin ligase activity by nedd8. Subcell Biochem 54: 41–56. doi: 10.1007/978-1-4419-6676-6_4
[6]
Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, et al. (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425: 316–321. doi: 10.1038/nature01985
[7]
Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26: 775–780. doi: 10.1016/j.molcel.2007.06.001
[8]
Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, et al. (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18: 3055–3065. doi: 10.1101/gad.1252404
[9]
Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW (1999) A family of mammalian F-box proteins. Curr Biol 9: 1180–1182. doi: 10.1016/s0960-9822(00)80021-4
[10]
Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, et al. (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18: 2573–2580. doi: 10.1101/gad.1255304
[11]
Li JM, Jin J (2012) CRL Ubiquitin Ligases and DNA Damage Response. Front Oncol 2: 29. doi: 10.3389/fonc.2012.00029
[12]
Zhao Y, Morgan MA, Sun Y (2014) Targeting Neddylation Pathways to Inactivate Cullin-RING Ligases for Anticancer Therapy. Antioxid Redox Signal.
[13]
Silverman JS, Skaar JR, Pagano M (2012) SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem Sci 37: 66–73. doi: 10.1016/j.tibs.2011.10.004
[14]
Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, et al. (2003) Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91. doi: 10.1038/nature02082
[15]
Kee Y, Kim JM, D'Andrea AD (2009) Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev 23: 555–560. doi: 10.1101/gad.1761309
[16]
Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, et al. (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329. doi: 10.1016/j.molcel.2006.06.013
[17]
Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23: 307–318. doi: 10.1016/j.molcel.2006.06.016
[18]
Wang Z, Inuzuka H, Zhong J, Fukushima H, Wan L, et al. (2012) DNA damage-induced activation of ATM promotes beta-TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget 3: 1026–1035.
[19]
Watanabe N, Arai H, Nishihara Y, Taniguchi M, Hunter T, et al. (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101: 4419–4424. doi: 10.1073/pnas.0307700101
[20]
Jin J, Shirogane T, Xu L, Nalepa G, Qin J, et al. (2003) SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17: 3062–3074. doi: 10.1101/gad.1157503
[21]
Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, et al. (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121: 387–400. doi: 10.1016/j.cell.2005.02.035
[22]
Wang H, Zhai L, Xu J, Joo HY, Jackson S, et al. (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22: 383–394. doi: 10.1016/j.molcel.2006.03.035
[23]
Abbas T, Shibata E, Park J, Jha S, Karnani N, et al. (2010) CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell 40: 9–21. doi: 10.1016/j.molcel.2010.09.014
[24]
Arias EE, Walter JC (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19: 114–126. doi: 10.1101/gad.1255805
[25]
Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, et al. (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40: 22–33. doi: 10.1016/j.molcel.2010.09.015
[26]
Higa LA, Mihaylov IS, Banks DP, Zheng J, Zhang H (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5: 1008–1015. doi: 10.1038/ncb1061
[27]
Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6: 1003–1009. doi: 10.1038/ncb1172
[28]
Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23: 709–721. doi: 10.1016/j.molcel.2006.08.010
[29]
Jorgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MS, et al. (2011) SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. J Cell Biol 192: 43–54. doi: 10.1083/jcb.201009076
[30]
Kim Y, Starostina NG, Kipreos ET (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22: 2507–2519. doi: 10.1101/gad.1703708
[31]
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, et al. (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458: 732–736. doi: 10.1038/nature07884
[32]
Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A (2010) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70: 10310–10320. doi: 10.1158/0008-5472.can-10-2062
[33]
Yang D, Tan M, Wang G, Sun Y (2012) The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme. PLoS One 7: e34079. doi: 10.1371/journal.pone.0034079
[34]
Jia L, Li H, Sun Y (2011) Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia 13: 561–569. doi: 10.1007/978-94-007-7726-2_3
[35]
Kee Y, Huang M, Chang S, Moreau LA, Park E, et al. (2012) Inhibition of the Nedd8 system sensitizes cells to DNA interstrand cross-linking agents. Mol Cancer Res 10: 369–377. doi: 10.1158/1541-7786.mcr-11-0497
[36]
Nawrocki ST, Kelly KR, Smith PG, Espitia CM, Possemato A, et al. (2013) Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin Cancer Res 19: 3577–3590. doi: 10.1158/1078-0432.ccr-12-3212
[37]
Jazaeri AA, Shibata E, Park J, Bryant JL, Conaway MR, et al. (2013) Overcoming platinum resistance in preclinical models of ovarian cancer using the neddylation inhibitor MLN4924. Mol Cancer Ther 12: 1958–1967. doi: 10.1158/1535-7163.mct-12-1028
[38]
Garcia K, Blank JL, Bouck DC, Liu XJ, Sappal DS, et al.. (2014) Nedd8-Activating Enzyme Inhibitor MLN4924 Provides Synergy with Mitomycin C through Interactions with ATR, BRCA1/BRCA2 and Chromatin Dynamics Pathways. Mol Cancer Ther.
[39]
Jacquemont C, Taniguchi T (2007) Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res 67: 7395–7405. doi: 10.1158/0008-5472.can-07-1015
[40]
Murakawa Y, Sonoda E, Barber LJ, Zeng W, Yokomori K, et al. (2007) Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res 67: 8536–8543. doi: 10.1158/0008-5472.can-07-1166
[41]
Johnson N, Li YC, Walton ZE, Cheng KA, Li D, et al. (2011) Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 17: 875–882. doi: 10.1038/nm.2377
[42]
Dutta P, Bui T, Bauckman KA, Keyomarsi K, Mills GB, et al. (2013) EVI1 splice variants modulate functional responses in ovarian cancer cells. Mol Oncol 7: 647–668. doi: 10.1016/j.molonc.2013.02.008
[43]
Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, et al. (2005) Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A 102: 1110–1115. doi: 10.1073/pnas.0407796102
[44]
Gunn A, Stark JM (2012) I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 920: 379–391. doi: 10.1007/978-1-61779-998-3_27
[45]
Wada H, Yeh ET, Kamitani T (2000) A dominant-negative UBC12 mutant sequesters NEDD8 and inhibits NEDD8 conjugation in vivo. J Biol Chem 275: 17008–17015. doi: 10.1074/jbc.275.22.17008
[46]
Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, et al. (2009) Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 69: 9367–9375. doi: 10.1158/0008-5472.can-09-2616
[47]
Cron KR, Zhu K, Kushwaha DS, Hsieh G, Merzon D, et al. (2013) Proteasome inhibitors block DNA repair and radiosensitize non-small cell lung cancer. PLoS One 8: e73710. doi: 10.1371/journal.pone.0073710
[48]
Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, et al. (1998) Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396: 590–594. doi: 10.1038/25159
[49]
Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1: 193–199. doi: 10.1038/12013
[50]
Wada H, Yeh ET, Kamitani T (1999) Identification of NEDD8-conjugation site in human cullin-2. Biochem Biophys Res Commun 257: 100–105. doi: 10.1006/bbrc.1999.0339
[51]
Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET (2010) CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 19: 753–764. doi: 10.1016/j.devcel.2010.10.013
[52]
Havens CG, Walter JC (2011) Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev 25: 1568–1582. doi: 10.1101/gad.2068611
[53]
Sorensen CS, Syljuasen RG, Lukas J, Bartek J (2004) ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3: 941–945. doi: 10.4161/cc.3.7.972
[54]
Moss J, Tinline-Purvis H, Walker CA, Folkes LK, Stratford MR, et al. (2010) Break-induced ATR and Ddb1-Cul4(Cdt)(2) ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes Dev 24: 2705–2716. doi: 10.1101/gad.1970810
[55]
Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salome-Desnoulez S, et al. (2013) The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic Acids Res 41: 6501–6513. doi: 10.1093/nar/gkt397
[56]
Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S, et al. (2007) Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J Pathol 213: 303–310. doi: 10.1002/path.2223
[57]
Chen LC, Manjeshwar S, Lu Y, Moore D, Ljung BM, et al. (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58: 3677–3683.
[58]
Yasui K, Arii S, Zhao C, Imoto I, Ueda M, et al. (2002) TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35: 1476–1484. doi: 10.1053/jhep.2002.33683
[59]
Bai J, Zhou Y, Chen G, Zeng J, Ding J, et al. (2011) Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol 42: 375–383. doi: 10.1016/j.humpath.2010.09.003
[60]
Bo H, Ghazizadeh M, Shimizu H, Kurihara Y, Egawa S, et al. (2004) Effect of ionizing irradiation on human esophageal cancer cell lines by cDNA microarray gene expression analysis. J Nippon Med Sch 71: 172–180. doi: 10.1272/jnms.71.172