全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Climate-Driven Variation in the Intensity of a Host-Symbiont Animal Interaction along a Broad Elevation Gradient

DOI: 10.1371/journal.pone.0101942

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gradients of environmental stress may affect biotic interactions in unpredictable ways responding to climate variation, depending on the abiotic stress tolerance of interacting partners. Here, we study the effect of local climate on the intensity of feather mites in six mountain passerines along a 1400 m elevational gradient characterized by shifting temperature and rainfall. Although obligatory symbionts of warm-blooded organisms are assumed to live in mild and homeothermic environments, those inhabiting external, non-blood-irrigated body portions of the host organism, such as feather mites, are expected to endure exposure to the direct influence of a fluctuating climate. As expected, feather mite intensity declined with elevation in all bird species, a pattern that was also found in cold-adapted passerines that have typical alpine habits. The elevation cline was mainly explained by a positive effect of the average temperature upon mite intensity in five of the six species studied. Precipitation explained less variance in mite intensity than average temperature, and showed a negative correlation in half of the studied species. We found no climate-driven migration of mites along the wings of birds, no replacement of mite species along elevation gradients and no association with available food resources for mites (estimated by the size of the uropygial gland). This study suggests that ectosymbionts of warm-blooded animals may be highly sensitive to climatic variation and become less abundant under stressful environmental conditions, providing empirical evidence of the decline of specialized biotic interactions among animal species at high elevations.

References

[1]  Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, et al. (2002) Ecological effects of climate fluctuations. 297: 1292–1296 doi: 10.1126/science.1071281.
[2]  Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33: 1712–1728 doi: 10.1111/j.1365-2699.2006.01482.x.
[3]  Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc Biol Sci B 276: 1395–1406 doi: 10.1098/rspb.2008.1480.
[4]  Pugnaire FI, Luque MT (2001) Changes in plant interactions along a gradient of environmental stress. Oikos 93: 42–49. doi: 10.1034/j.1600-0706.2001.930104.x
[5]  Walther GR, Post E, Conve P, Menzel A, Parmesan C, et al. (2002) Ecological effects of climate fluctuations. Science 297: 1292–1296 doi: 10.1038/416389a.
[6]  Moya-Lara?o J, Verdeny O, Rowntree J, Melguizo-Ruiz N, Montserrat M, et al. (2012) Climate Change and Eco-Evolutionary Dynamics in Food Webs. Advances in Ecological Research 47: 1–80. doi: 10.1016/b978-0-12-398315-2.00001-6
[7]  Sutherland JP, Menge BA (1987) Community Regulation: Variation in Disturbance, Competition, and Predation in Relation to Environmental Stress and Recruitment. Am Nat 130: 730 doi: 10.1086/284741.
[8]  Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9: 191–193 doi: 10.1016/0169-5347(94)90088-4.
[9]  Laiolo P (2013) From inter-specific behavioural interactions to species distribution patterns along gradients of habitat heterogeneity. Oecologia. doi: 10.1007/s00442-012-2392-y.
[10]  Pounds JA, Bustamante MR, Coloma L, Consuegra JA, Fogden MPL, et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167 doi: 10.1038/nature04246.
[11]  Merrill RM, Gutiérrez D, Lewis OT, Gutiérrez J, Díez SB, et al. (2008) Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J Anim Ecol 77: 145–155 doi: 10.1111/j.1365-2656.2007.01303.x.
[12]  Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL, et al. (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13: 1459–1474 doi: 10.1111/j.1461-0248.2010.01538.x.
[13]  Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, et al. (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60: 602–613 doi: 10.1525/bio.2010.60.8.6.
[14]  Berg MP, Kiers ET, Driessen G, Heijden M, Kooi BW, et al. (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Chang Biol 16: 587–598 doi: 10.1111/j.1365-2486.2009.02014.x.
[15]  Ruotsalainen AL, Kyt?viita M-M (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140: 226–233 doi: 10.1007/s00442-004-1586-3.
[16]  Giauque H, Hawkes CV (2013) Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot 100: 1435–1444. doi: 10.3732/ajb.1200568
[17]  Fabina NS, Putnam HM, Franklin EC, Stat M, Gates RD (2013) Symbiotic specificity, association patterns, and function determine community responses to global changes: Defining critical research areas for coral-Symbiodinium symbioses. Glob Chang Biol. 3306–3316. doi: 10.1111/gcb.12320.
[18]  Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52: 107–126 doi: 10.1146/annurev.ento.52.110405.091333.
[19]  K?rner C (2003) Alpine plant life, 2nd edn. Springer, Berlin.
[20]  Dabert J, Mironov SV (1999) Origin and evolution of feather mites (Astigmata). Exp Appl Acarol 23: 437–454. doi: 10.1007/978-94-017-1343-6_5
[21]  Proctor H, Owens I (2000) Mites and birds: diversity, parasitism and coevolution. Trends Ecol Evol 15: 358–364 doi: 10.1016/S0169-5347(00)01924-8.
[22]  Proctor H (2003) Feather mites (Acari: Astigmata): ecology, behaviour, and evolution. Annu Rev Entomol 48: 185–209.
[23]  Dubinin VB (1951) Feather mites (Analgesoidea). Part 1. Introduction to their study. Fauna USSR 6(5): 1–363.
[24]  Spieksma FTM, Zuidema P, Leupen MJ (1971) High Altitude and House-dust Mites. Br Med J 1: 82–84. doi: 10.1136/bmj.1.5740.82
[25]  Gaede K, Knülle W (1987) water vapour uptake from the atmosphere and critical equilibrium humidity of a feather mite. Exp Appl Acarol 3: 45–52. doi: 10.1007/bf01200412
[26]  Wiles PR, Cameron J, Behnke JM, Hartley IR, Gilbert FS, et al. (2000) Season and ambient air temperature influence the distribution of mites (Proctophyllodes stylifer) across the wings of blue tits (Parus caeruleus). Can J Zool 78: 1397–1407 doi: 10.1139/z00-068.
[27]  Moyer B, Drown D, Clayton D (2002) Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97: 223–228 doi: 1600-0706.2002.970208.x.
[28]  Sandilands V, Savory J, Powell K (2004) Preen gland function in layer fowls: factors affecting morphology and feather lipid levels. Comp Biochem Physiol Part A Mol Integr Physiol 137: 217–225 doi: 10.1016/j.cbpb.2003.10.004.
[29]  Galván I, Sanz JJ (2006) Feather mite abundance increases with uropygial gland size and plumage yellowness in Great Tits Parus major. Ibis 148: 687–697 doi: 10.1111/j.1474-919X.2006.00576.x.
[30]  Galván I, Barba E, Piculo R, Cantó JL, Cortés V, et al. (2008) Feather mites and birds: an interaction mediated by uropygial gland size? J Evol Biol 21: 133–144 doi: 10.1111/j.1420-9101.2007.01459.x.
[31]  Haribal M, Dhondt AA, Rodriguez E, Proctor H (2011) (Acari: Proctophyllodidae), parallels variation in preen gland secretions. Int J Acarol 37: 75–90 doi: 10.1080/01647954.2010.495952.
[32]  Blanco G, Tella JL, Potti JP (1997) Feather mites on group-living Red-billed Choughs: a non-parasitic interaction? J Avian Biol 28: 197–206 doi: 10.2307/3676970.
[33]  Blanco G, Tella JL, Potti J, Baz A (2001) Feather mites on birds: costs of parasitism or conditional outcomes? J Avian Biol 32: 271–274 doi:/10.1111/j.0908-8857.2001.320310.x.
[34]  Rózsa L (1997) Wing-feather mite (Acari: Proctophyllodidae) abundance correlates with body mass of passerine hosts: a comparative study. Can J Zool 75: 1535–1539 doi: 10.1139/z97-778.
[35]  Jovani R, Blanco G (2000) Resemblance within flocks and individual differences in feather mite abundance on long-tailed tits, Aegithalos caudatus (L.). Ecoscience 7: 428–432.
[36]  Galván I, Aguilera E, Atiénzar F, Barba E, Blanco G, et al. (2012) Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study. J Avian Biol 43: 273–279 doi: 10.1111/j.1600-048X.2012.05686.x.
[37]  Hillgarth N, Leu M, Thompson CW, McClure HE (1997) High Parasite Load in House Finches (Carpodacus mexicanus) is Correlated with Reduced Expression of a Sexually Selected Trait. Am Nat 149: 270 doi: 10.1086/285990.
[38]  Harper DGC (1999) Feather mites, pectoral muscle condition, wing length and plumage coloration of passerines. Anim Behav 58: 553–562. doi: 10.1006/anbe.1999.1154
[39]  Perez-Tris J, Carbonell R, Telleria JL (2002) Parasites and the blackcap's tail: implications for the evolution of feather ornaments. Biol J Linn Soc 76: 481–492 doi: 10.1046/j.1095-8312.2002.00083.x.
[40]  Figuerola J (2003) Plumage colour is related to ectosymbiont load during moult in the serin, Serinus serinus: an experimental study. Anim Behav 65: 551–557 doi: 10.1006/anbe.2003.2072.
[41]  Brown CR, Brown MB, Strickler SA, Brazeal KR (2006) Feather mites are positively associated with daily survival in cliff swallows. Can J Zool 84: 1307–1314 doi: 10.1139/z06-110.
[42]  Roe AD, James PMA, Rice AV, Cooke J, Sperling FA (2011) Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. Microb Ecol 62: 347–360 doi: 10.1007/s00248-011-9841-8.
[43]  Svensson L (1992) Identification Guide to European Passerines. Fingraf AB, Stockholm.
[44]  Jovani R, Serrano D (2001) Feather mites (Astigmata) avoid moulting wing feathers of passerine birds. Anim Behav 62: 723–727 doi: 10.1006/anbe.2001.1814.
[45]  Jovani R, Serrano D, Frías ó, Blanco G (2006) Shift in feather mite distribution during the molt of passerines: the case of barn swallows (Hirundo rustica). Can J Zool 84: 729–735 doi: 10.1139/z06-042.
[46]  Inouye DW, Wielgolaski FE (2003). Phenology: An Integrative Environmental Science. (M. D. Schwartz, Ed.) (Vol. 39, pp. 195–214). Dordrecht: Springer Netherlands.
[47]  Krantz GW, Walter DE (2009) A Manual of Acarology, 3rd edn. Texas Tech. University Press.
[48]  Gaud J, Atyeo WT (1996) Feather mites of the World (Acarina, Astigmata): the supraspecific taxa. Musée Royal de l'Afrique Centrale, Annales, Sciences Zoologiques 277: 1–193.
[49]  Atyeo WT, Braasch NL (1966) The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophyllodidae). Bulletin of the University of Nebraska State Museum 5: 1–354.
[50]  ?erny V (1982) Proctophyllodes schwerinensis sp. eine neue Federmilbenart von Anthus spinoletta. Angewandte Parasitologie 23: 158–159.
[51]  Ninyerola M, Roure JM, Pons Fernández X (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Bellaterra, Barcelona.
[52]  R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/.
[53]  Herr DG (1986) On the history of ANOVA in unbalanced, factorial designs: The first 30 years. Am Stat 40: 265–270. doi: 10.2307/2684597
[54]  Antoniazzi LR, Manzoli DE, Rohrmann D, Saravia MJ, Silvestri L, et al. (2011) Climate variability affects the impact of parasitic flies on Argentinean forest birds. J Zool 283: 126–134 doi: 10.1111/j.1469-7998.2010.00753.x.
[55]  Lindstr?m J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14: 343–348. doi: 10.1016/s0169-5347(99)01639-0
[56]  Newton I (2010) The Migration Ecology of Birds. Academic Press, London.
[57]  Laiolo P, Illera J, Obeso J (2013) Local climate determines intra-and interspecific variation in sexual size dimorphism in mountain grasshopper communities. J Evol Biol 26 (10): 2171–83 doi: 10.1111/jeb.12213.
[58]  Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80: 489–513 doi: 10.1017/S1464793105006767.
[59]  Mironov SV, Malyshev LL (2002) Dynamics of infection of Chaffinch nestlings Fringilla coelebs with feather mites (Acari: Analgoidea). Parasitologiya 36: 356–374.
[60]  Meléndez L, Laiolo P (2014) The role of climate in constraining the elevational range of the water pipit Anthus spinoletta in an alpine environment. Ibis (in press) doi: 10.1111/ibi.12127.
[61]  Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41: 294–304 doi: 10.1111/j.0021-8901.2004.00893.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133