全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

SUMO-2 Promotes mRNA Translation by Enhancing Interaction between eIF4E and eIF4G

DOI: 10.1371/journal.pone.0100457

Full-Text   Cite this paper   Add to My Lib

Abstract:

Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process.

References

[1]  Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279: 27233–27238. doi: 10.1074/jbc.m402273200
[2]  Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337: 517–520. doi: 10.1016/j.bbrc.2005.09.090
[3]  Lapenta V, Chiurazzi P, van der Spek P, Pizzuti A, Hanaoka F, et al. (1997) SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Genomics 40: 362–366. doi: 10.1006/geno.1996.4556
[4]  Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258. doi: 10.1074/jbc.275.9.6252
[5]  Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET (1998) Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem 273: 11349–11353. doi: 10.1074/jbc.273.18.11349
[6]  Sarge KD, Park-Sarge OK (2009) Sumoylation and human disease pathogenesis. Trends Biochem Sci 34: 200–205. doi: 10.1016/j.tibs.2009.01.004
[7]  Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956. doi: 10.1038/nrm2293
[8]  Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32: 286–295. doi: 10.1016/j.tibs.2007.05.002
[9]  Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1–12. doi: 10.1016/j.molcel.2005.03.012
[10]  Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–382. doi: 10.1146/annurev.biochem.73.011303.074118
[11]  Xu X, Vatsyayan J, Gao C, Bakkenist CJ, Hu J (2010) Sumoylation of eIF4E activates mRNA translation. EMBO Rep 11: 299–304. doi: 10.1038/embor.2010.18
[12]  Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963. doi: 10.1146/annurev.biochem.68.1.913
[13]  Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269: 5350–5359. doi: 10.1046/j.1432-1033.2002.03291.x
[14]  Nie M, Htun H (2006) Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5′-UTR. Nucleic Acids Res 34: 5528–5540. doi: 10.1093/nar/gkl584
[15]  Wang J, Jiang PX, Feng H, Feng Y, He ZG (2007) Three eukaryote-like Orc1/Cdc6 proteins functionally interact and mutually regulate their activities of binding to the replication origin in the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochem Biophys Res Commun 363: 63–70. doi: 10.1016/j.bbrc.2007.08.125
[16]  Pfahl M, Tzukerman M, Zhang XK, Lehmann JM, Hermann T, et al. (1990) Nuclear retinoic acid receptors: cloning, analysis, and function. Methods Enzymol 189: 256–270. doi: 10.1016/0076-6879(90)89297-u
[17]  Chen L, Yang X, Jiao H, Zhao B (2002) Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol Sci 69: 149–156. doi: 10.1093/toxsci/69.1.149
[18]  Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, et al. (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128: 257–267. doi: 10.1016/j.cell.2006.11.046
[19]  Yang W, Paschen W (2009) Gene expression and cell growth are modified by silencing SUMO2 and SUMO3 expression. Biochem Biophys Res Commun 382: 215–218. doi: 10.1016/j.bbrc.2009.03.013
[20]  Wilson VG, Heaton PR (2008) Ubiquitin proteolytic system: focus on SUMO. Expert Rev Proteomics 5: 121–135. doi: 10.1586/14789450.5.1.121
[21]  Fan S, Li Y, Yue P, Khuri FR, Sun SY (2010) The eIF4E/eIF4G interaction inhibitor 4EGI-1 augments TRAIL-mediated apoptosis through c-FLIP Down-regulation and DR5 induction independent of inhibition of cap-dependent protein translation. Neoplasia 12: 346–356.
[22]  Finkbeiner E, Haindl M, Muller S (2011) The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J 30: 1067–1078. doi: 10.1038/emboj.2011.33
[23]  Mader S, Sonenberg N (1995) Cap binding complexes and cellular growth control. Biochimie 77: 40–44. doi: 10.1016/0300-9084(96)88102-8
[24]  Frederickson RM, Montine KS, Sonenberg N (1991) Phosphorylation of eukaryotic translation initiation factor 4E is increased in Src-transformed cell lines. Mol Cell Biol 11: 2896–2900.
[25]  Joshi-Barve S, Rychlik W, Rhoads RE (1990) Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48 S initiation complex. J Biol Chem 265: 2979–2983.
[26]  Makkinje A, Xiong H, Li M, Damuni Z (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulin-stimulated protamine kinase. J Biol Chem 270: 14824–14828. doi: 10.1074/jbc.270.24.14824
[27]  Rinker-Schaeffer CW, Austin V, Zimmer S, Rhoads RE (1992) Ras transformation of cloned rat embryo fibroblasts results in increased rates of protein synthesis and phosphorylation of eukaryotic initiation factor 4E. J Biol Chem 267: 10659–10664.
[28]  Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, et al. (1995) cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A 92: 7222–7226. doi: 10.1073/pnas.92.16.7222
[29]  Haystead TA, Haystead CM, Hu C, Lin TA, Lawrence JJ (1994) Phosphorylation of PHAS-I by mitogen-activated protein (MAP) kinase. Identification of a site phosphorylated by MAP kinase in vitro and in response to insulin in rat adipocytes. J Biol Chem 269: 23185–23191.
[30]  Lin TA, Kong X, Haystead TA, Pause A, Belsham G, et al. (1994) PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266: 653–656. doi: 10.1126/science.7939721
[31]  Morley SJ, Traugh JA (1993) Stimulation of translation in 3T3-L1 cells in response to insulin and phorbol ester is directly correlated with increased phosphate labelling of initiation factor (eIF-) 4F and ribosomal protein S6. Biochimie 75: 985–989. doi: 10.1016/0300-9084(93)90149-m
[32]  Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, et al. (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371: 762–767. doi: 10.1038/371762a0
[33]  Xu X, Vatsyayan J, Gao C, Bakkenist CJ, Hu J (2010) HDAC2 promotes eIF4E sumoylation and activates mRNA translation gene specifically. J Biol Chem 285: 18139–18143. doi: 10.1074/jbc.c110.131599
[34]  Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799–26802. doi: 10.1074/jbc.272.43.26799
[35]  Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373: 78–81. doi: 10.1038/373078a0
[36]  Al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108 (Pt 2) 475–486.
[37]  Shayeghi M, Doe CL, Tavassoli M, Watts FZ (1997) Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res 25: 1162–1169. doi: 10.1093/nar/25.6.1162
[38]  Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, et al. (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci U S A 104: 5073–5078. doi: 10.1073/pnas.0608773104
[39]  Bischof O, Dejean A (2007) SUMO is growing senescent. Cell Cycle 6: 677–681. doi: 10.4161/cc.6.6.4021
[40]  Gutierrez GJ, Ronai Z (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 31: 324–332. doi: 10.1016/j.tibs.2006.04.001
[41]  Seeler JS, Bischof O, Nacerddine K, Dejean A (2007) SUMO, the three Rs and cancer. Curr Top Microbiol Immunol 313: 49–71. doi: 10.1007/978-3-540-34594-7_4
[42]  Kim KI, Baek SH (2006) SUMOylation code in cancer development and metastasis. Mol Cells 22: 247–253.
[43]  McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8: 1127–1138. doi: 10.1038/sj.neo.7900217
[44]  Mo YY, Yu Y, Theodosiou E, Ee PL, Beck WT (2005) A role for Ubc9 in tumorigenesis. Oncogene 24: 2677–2683. doi: 10.1038/sj.onc.1208210
[45]  Wang L, Banerjee S (2004) Differential PIAS3 expression in human malignancy. Oncol Rep 11: 1319–1324. doi: 10.3892/or.11.6.1319
[46]  Lee JS, Thorgeirsson SS (2004) Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127: S51–S55. doi: 10.1053/j.gastro.2004.09.015
[47]  Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398: 246–251.
[48]  Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, et al. (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2: a24. doi: 10.1126/scisignal.2000282

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133