全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Modifiable Temporal Unit Problem (MTUP) and Its Effect on Space-Time Cluster Detection

DOI: 10.1371/journal.pone.0100465

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background When analytical techniques are used to understand and analyse geographical events, adjustments to the datasets (e.g. aggregation, zoning, segmentation etc.) in both the spatial and temporal dimensions are often carried out for various reasons. The ‘Modifiable Areal Unit Problem’ (MAUP), which is a consequence of adjustments in the spatial dimension, has been widely researched. However, its temporal counterpart is generally ignored, especially in space-time analysis. Methods In analogy to MAUP, the Modifiable Temporal Unit Problem (MTUP) is defined as consisting of three temporal effects (aggregation, segmentation and boundary). The effects of MTUP on the detection of space-time clusters of crime datasets of Central London are examined using Space-Time Scan Statistics (STSS). Results and Conclusion The case study reveals that MTUP has significant effects on the space-time clusters detected. The attributes of the clusters, i.e. temporal duration, spatial extent (size) and significance value (p-value), vary as the aggregation, segmentation and boundaries of the datasets change. Aggregation could be used to find the significant clusters much more quickly than at lower scales; segmentation could be used to understand the cyclic patterns of crime types. The consistencies of the clusters appearing at different temporal scales could help in identifying strong or ‘true’ clusters.

References

[1]  Kechadi M, Bertolotto M, Ferrucci F, Di Martino S (2009) Mining spatio-temporal datasets: relevance, challenges and current research directions. In: Ponce J, Karahoc A, (eds.) Data mining and knowledge discovery in real life applications. Vienna: I-Tech Education and Publishing. pp. 215–228.
[2]  Uittenbogaard A, Ceccato V (2012) Space-time clusters of crime in Stockholm, Sweden. Rev Eur Stud 4(5): 148–156. doi: 10.5539/res.v4n5p148
[3]  Openshaw S, Taylor PJ (1981) The modifiable areal unit problem. In: Wrigley N and Bennett RJ (eds.) Quantitative Geography: A British View. London: Routledge and Kegan Paul: pp. 60–70.
[4]  Openshaw S (1984) Ecological fallacies and the analysis of areal census data. Environ Plan A 16(1): 17–31. doi: 10.1068/a160017
[5]  Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: The analysis of spatially varying relationships. Chichester: Wiley-Blackwell. 284 p.
[6]  Dark SJ, Bram D (2007) The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geogr 31(5): 471–479. doi: 10.1177/0309133307083294
[7]  ??ltekin A, De Sabbata S, Willi C, Vontobel I, Pfister S, et al.. (2011) Modifiable temporal unit problem. ISPRS/ICA workshop on Persistent Problems in Geographic Visualization (ICC2011), Paris: International Cartographic Association. Available: http://www.geo.unizh.ch/~sdesabba/docs/M?odifiableTemporalUnitProblem.pdf. Accessed 6 May 2014.
[8]  De Jong R, de Bruin S (2012) Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9(1): 71–77. doi: 10.5194/bg-9-71-2012
[9]  Freeman JR (1989) Systematic sampling, temporal aggregation, and the study of political relationships. Polit Anal 1(1): 61–98. doi: 10.1093/pan/1.1.61
[10]  Alt J, King G, Signorino C (2001) Aggregation among binary, count, and duration models: estimating the same quantities from different levels of data. Polit Anal 9(1): 21–44. doi: 10.1093/oxfordjournals.pan.a004863
[11]  Thomas GD (2002) Event data analysis and threats from temporal aggregation. Presented at the Florida Political Science Association Meeting, Sarasota, FL, March 8.
[12]  Shellman SM (2004) Time series intervals and statistical inference: the effects of temporal aggregation on event data analysis. Polit Anal 12(1): 97–104. doi: 10.1093/pan/mpg017
[13]  Amendola A, Niglio M, Vitale C (2010) Temporal aggregation and closure of VARMA models: some new results. In: Palumbo F, Lauro CN, Greenacre MJ (eds.), Data analysis and classification. Berlin: Springer. pp. 435–443.
[14]  Amrhein CG (1995) Searching for the elusive aggregation effect: evidence from statistical simulations. Environ Plan A 27(1): 105–119. doi: 10.1068/a270105
[15]  B?hlen MH, Johann G, Christian SJ (2008) Towards general temporal aggregation. Sharing Data, Information and Knowledge. Berlin: Springer, pp. 257–269.
[16]  Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. IEEE Symposium on Visual Analytics Science and Technology(VAST '08). pp. 51–58.
[17]  Fotheringham AS, Rogerson PA (1993) GIS and spatial analytical problems. Int J Geogr Inf Syst 7(1): 3–19. doi: 10.1080/02693799308901936
[18]  Pineda J (1993) Boundary effects on the vertical ranges of deep-sea benthic species. Deep Sea Res Part Oceanogr Res Pap 40(11): 2179–2192. doi: 10.1016/0967-0637(93)90097-m
[19]  Engestrom Y (2009) The future of activity theory: a rough draft. In: Sannino D & Gutiérrez KD (eds.) Learning and expanding with activity theory. Cambridge: Cambridge University Press. pp. 303–328.
[20]  Ozonoff A, Jeffery C, Manjourides J, White LF, Pagano M (2007) Effect of spatial resolution on cluster detection: a simulation study. Int J Health Geogr 6(10): 52. doi: 10.1186/1476-072x-6-52
[21]  Jeffery C, Ozonoff A, White LF, Nuno M, Pagano M (2009) Power to detect spatial disturbances under different levels of geographic aggregation. J Am Med Inform Assoc JAMIA 16(6): 847–854. doi: 10.1197/jamia.m2788
[22]  Cook AJ, Li Y, Arterburn D, Tiwari RC (2010) Spatial cluster detection for weighted outcomes using cumulative geographic residuals. Biometrics 66(3): 783–792. doi: 10.1111/j.1541-0420.2009.01323.x
[23]  Jones SG, Kulldorff M (2012) Influence of spatial resolution on space-time disease cluster detection. PLoS One 7(10): e48036 doi:10.1371/journal.pone.0048036.
[24]  Zhang L, Zhu Z (2012) Spatial multi-resolution cluster detection method. Statistics and Its Interface 0: 1–8 http://arxiv.org/pdf/1205.2106.
[25]  Wei WWS (1982) The effects of systematic sampling and temporal aggregation on causality - A cautionary note. J Am Stat Assoc 77(378): 316–319. doi: 10.1080/01621459.1982.10477806
[26]  Rossana RJ, Seater JJ (1995) Temporal aggregation and economic time series. J Bus Econ Stat 13(4): 441–451. doi: 10.2307/1392389
[27]  Marcellino M (1999) Some consequences of temporal aggregation in empirical analysis. J Bus Econ Stat 17(1): 129–136. doi: 10.1080/07350015.1999.10524802
[28]  Kirshen PH (1980) Spatial and temporal aggregation effects in a regional water supply planning model. Water Resour Res 16(3): 457–464. doi: 10.1029/wr016i003p00457
[29]  Gangopadhyay S, Clark M, Werner K, Brandon D, Rajagopalan B (2004) Effects of spatial and temporal aggregation on the accuracy of statistically downscaled precipitation estimates in the Upper Colorado river basin. J Hydrometeorol 5(6): 1192–1206. doi: 10.1175/jhm-391.1
[30]  Kwan MP (2012) The uncertain geographic context problem. Ann Assoc Am Geogr 102(5): 958–968. doi: 10.1080/00045608.2012.687349
[31]  Griffith DA (1983) The boundary value problem in spatial statistical analysis. J Reg Sci 23(3): 377–387. doi: 10.1111/j.1467-9787.1983.tb00996.x
[32]  Martin RJ (1987) Some comments on correction techniques for boundary effects and missing value techniques. Geogr Anal 19(3): 273–282. doi: 10.1111/j.1538-4632.1987.tb00130.x
[33]  Kulldorff M (1997) A spatial scan statistic. Commun Stat - Theory Methods 26(6): 1481–1496. doi: 10.1080/03610929708831995
[34]  Openshaw S, Charlton M, Wymer C, Craft A (1987) A mark 1 geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inf Syst 1(4): 335–358. doi: 10.1080/02693798708927821
[35]  Neill DB, Gorr WL (2007) Detecting and preventing emerging epidemics of crime. Adv Dis Surveill 4: 13 Available: http://www.isdsjournal.org/articles/1945?.pdf. Accessed 6 May 2014.
[36]  Kulldorff M, Heffernan R, Hartman J, Assun??o R, Mostashari F (2005) A space–time permutation scan statistic for disease outbreak detection. PLoS Med 2: 3. e59 doi:10.1371/journal.pmed.0020059.
[37]  Tuia D, Ratle F, Lasaponara R, Telesca L, Kanevski M (2008) Scan statistics analysis of forest fire clusters. Commun Nonlinear Sci Numer Simul 13(8): 1689–1694. doi: 10.1016/j.cnsns.2007.03.004
[38]  Kulldorff M (2010) SaTScan: Software for the spatial and space–time scan statistics, version 9.0.1. Information Management Services Available: http://www.satscan.org.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133