全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Macroecological Evidence for Competitive Regional-Scale Interactions between the Two Major Clades of Mammal Carnivores (Feliformia and Caniformia)

DOI: 10.1371/journal.pone.0100553

Full-Text   Cite this paper   Add to My Lib

Abstract:

Geographical gradients in species diversity are often explained by environmental factors such as climate and productivity. Biotic interactions play a key role in evolutionary diversification and may therefore also affect diversity patterns, but this has rarely been assessed. Here, we investigate whether negative competitive interactions shape the diversity patterns of the two major mammalian clades of carnivores, the suborders Caniformia (dogs and allies) and Feliformia (cats and allies) within the order Carnivora. We specifically test for a negative effect of feliform species richness on caniform species richness by a natural experiment, The Great American Interchange, which due to biogeographic lineage history and climate patterns caused tropical South America to be colonized by most caniform families, but only one feliform family. To this end we used regression modelling to investigate feliform and caniform richness patterns and their determinants with emphasis on contrasting the Old and New World tropics. We find that feliform richness is elevated in the Old World Tropics, while caniform richness is elevated in the New World Tropics. Models based on environmental variables alone underpredict caniform richness and overpredict feliform richness in the New World and vice versa in the Old World. We further show that models including feliform richness as a predictor for caniform species richness significantly improve predictions at the continental scale, albeit not at finer scales. Our results are consistent with a negative effect of feliforms on regional-scale caniform diversification within the tropics, probably indicating that niche space occupancy by the one clade constrains diversification in the other in the build-up of regional faunas, while negative interactions at smaller scales may be unimportant due to niche differentiation within the regional faunas.

References

[1]  Macdonald DW, Norris S (2001) The New Encyclopedia of Mammals. Oxford University Press.
[2]  Van Valkenburgh B (2007) Deja vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47: 147–163 doi:10.1093/icb/icm016.
[3]  Van Valkenburgh B (1999) Major patterns in the history of carnivorous mammals. Annu Rev Earth Planet Sci 27: 463–493 doi:10.1146/annurev.earth.27.1.463.
[4]  Valkenburgh BVan (1991) Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17: 340–362.
[5]  Wang SW, Macdonald DW (2009) Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. J Zool 277: 275–283 doi:10.1111/j.1469-7998.2008.00537.x.
[6]  Palomares F, Caro TM (1999) Interspecific Killing among Mammalian Carnivores. Am Nat 153: 492–508 doi:10.1086/303189.
[7]  Barycka E (2007) Evolution and systematics of the feliform Carnivora. Mamm Biol 72: 257–282 doi:10.1016/j.mambio.2006.10.011.
[8]  Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP, et al. (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc Biol Sci 277: 2131–2138 doi:10.1098/rspb.2010.0179.
[9]  Woodburne MO (2010) The Great American Biotic Interchange: Dispersals, tectonics, climate, sea Level and holding pens. J Mamm Evol 17: 245–264 doi:10.1007/s10914-010-9144-8.
[10]  Webb S (2006) The Great American Biotic Interchange: patterns and processes. Ann Missouri Bot Gard 93: 245–257. doi: 10.3417/0026-6493(2006)93[245:tgabip]2.0.co;2
[11]  Berta A (1998) Hyaenidae. In: Janis CM, Scott KM, Jacobs LL, editors. Evolution of Tertiary Mammals of North America: Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Vol. 1: . pp. 243–246.
[12]  Veron G, Colyn M, Dunham AE, Taylor P, Gaubert P (2004) Molecular systematics and origin of sociality in mongooses (Herpestidae, Carnivora). Mol Phylogenet Evol 30: 582–598 doi:10.1016/S1055-7903(03)00229-X.
[13]  IUCN (2010) IUCN Red List of Threatened Species. Version 20104. Available: http://www.iucnredlist.org.
[14]  Moreno-Rueda G, Pizarro M (2008) Relative influence of habitat heterogeneity, climate, human disturbance, and spatial structure on vertebrate species richness in Spain. Ecol Res 24: 335–344 doi:10.1007/s11284-008-0509-x.
[15]  Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965–1978 doi:10.1002/joc.1276.
[16]  The GlobCover Project (2010) GlobCover. Available: http://www.gofc-gold.uni-jena.de/wg_biom?ass/sites/globcover.php.
[17]  Sanderson EW, Jaiteh M, Levy M, Redford KH, Wannebo AV, et al. (2002) The Human Footprint and the Last of the Wild. Bioscience 52: 891 doi:[];10.1641/0006-3568(2002)052[0891:THFATL]2?.0.CO;2.
[18]  Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297: 1548–1551 doi:10.1126/science.1072779.
[19]  Kissling WD, Rahbek C, B?hning-Gaese K (2007) Food plant diversity as broad-scale determinant of avian frugivore richness. Proc Biol Sci 274: 799–808 doi:10.1098/rspb.2006.0311.
[20]  Tucker CJ, Pinzon JE, Brown ME (2004) Global Inventory Modeling and Mapping Studies. College Park, Maryland: Global Land Cover Facility, University of Maryland.
[21]  Pinzon J, Brown ME, Tucker CJ (2005) Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In: Huang N, editor. Hilbert-Huang Transform: Introduction and Applications. pp. 167–186.
[22]  Tucker C, Pinzon J, Brown M, Slayback D, Pak E, et al. (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26: 4485–4498 doi:10.1080/01431160500168686.
[23]  R Core Team (2014) R: A Language and Environment for Statistical Computing.
[24]  Hijmans RJ (2014) raster: Geographic data analysis and modeling.
[25]  Bivand R, Lewin-Koh N (2014) maptools: Tools for reading and handling spatial objects.
[26]  Bivand R (2014) spdep: Spatial dependence: weighting schemes, statistics and models.
[27]  Bjornstad ON (2013) ncf: spatial nonparametric covariance functions.
[28]  code by Richard A. Becker OS, version by Ray Brownrigg. Enhancements by Thomas P Minka ARWR (2013) maps: Draw Geographical Maps.
[29]  Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York doi: 10.1111/j.1541-0420.2011.01616.x
[30]  Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop) 30: 609–628 doi:10.1111/j.2007.0906-7590.05171.x.
[31]  Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17: 59–71 doi:10.1111/j.1466-8238.2007.00334.x.
[32]  Bivand R, Altman M, Anselin L, Assun??o R, Berke O, et al.. (2012) spdep: Spatial dependence: weighting schemes, statistics and models.
[33]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer-Verlag.
[34]  Fukami T, Beaumont HJE, Zhang X-X, Rainey PB (2007) Immigration history controls diversification in experimental adaptive radiation. Nature 446: 436–439 doi:10.1038/nature05629.
[35]  Laliberte AS, Ripple WJ (2004) Range contractions of North American carnivores and ungulates. Bioscience 54: 123–138 doi:[];10.1641/0006-3568(2004)054[0123:RCONAC]2?.0.CO;2.
[36]  Kurtén B (1968) Pleistocene mammals of Europe. Weidenfeld & Nicolson.
[37]  Kurtén B, Anderson E (1980) Pleistocene mammals of North America. Columbia University Press.
[38]  Sommer RS, Benecke N (2006) Late Pleistocene and Holocene development of the felid fauna (Felidae) of Europe: a review. J Zool 269: 7–19 doi:10.1111/j.1469-7998.2005.00040.x.
[39]  Sommer R, Benecke N (2005) Late-Pleistocene and early Holocene history of the canid fauna of Europe (Canidae). Mamm Biol 70: 227–241 doi:10.1016/j.mambio.2004.12.001.
[40]  Sandom C, Faurby S, Sandel B, Svenning J-C (2014) Global Late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B Biol Sci 281 doi:10.1098/rspb.2013.3254.
[41]  Wiens JJ (2011) The niche, biogeography and species interactions. Philos Trans R Soc Lond B Biol Sci 366: 2336–2350 doi:10.1098/rstb.2011.0059.
[42]  Kok OB, Nel JAJ (2004) Convergence and divergence in prey of sympatric canids and felids: opportunism or phylogenetic constraint? Biol J Linn Soc 83: 527–538 doi:10.1111/j.1095-8312.2004.00409.x.
[43]  Murphy KM, Felzien GS, Hornocker MG, Ruth TK (1998) Encounter competition between bears and cougars: some ecological implications. Ursus 10: 55–60.
[44]  Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12: 53–64 doi:10.1046/j.1466-822X.2003.00322.x.
[45]  Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc 88: 15–30 doi:10.1111/j.1469-185X.2012.00235.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133