全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pros and Cons of the Tuberculosis Drugome Approach – An Empirical Analysis

DOI: 10.1371/journal.pone.0100829

Full-Text   Cite this paper   Add to My Lib

Abstract:

Drug-resistant Mycobacterium tuberculosis (MTB), the causative pathogen of tuberculosis (TB), has become a serious threat to global public health. Yet the development of novel drugs against MTB has been lagging. One potentially powerful approach to drug development is computation-aided repositioning of current drugs. However, the effectiveness of this approach has rarely been examined. Here we select the “TB drugome” approach – a protein structure-based method for drug repositioning for tuberculosis treatment – to (1) experimentally validate the efficacy of the identified drug candidates for inhibiting MTB growth, and (2) computationally examine how consistently drug candidates are prioritized, considering changes in input data. Twenty three drugs in the TB drugome were tested. Of them, only two drugs (tamoxifen and 4-hydroxytamoxifen) effectively suppressed MTB growth at relatively high concentrations. Both drugs significantly enhanced the inhibitory effects of three first-line anti-TB drugs (rifampin, isoniazid, and ethambutol). However, tamoxifen is not a top-listed drug in the TB drugome, and 4-hydroxytamoxifen is not approved for use in humans. Computational re-examination of the TB drugome indicated that the rankings were subject to technical and data-related biases. Thus, although our results support the effectiveness of the TB drugome approach for identifying drugs that can potentially be repositioned for stand-alone applications or for combination treatments for TB, the approach requires further refinements via incorporation of additional biological information. Our findings can also be extended to other structure-based drug repositioning methods.

References

[1]  Keshavjee S, Farmer PE (2012) Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med 367: 931–936. doi: 10.1056/nejmra1205429
[2]  Dheda K, Shean K, Badri M (2008) Extensively drug-resistant tuberculosis. N Engl J Med 359: 2390; author reply 2391. doi: 10.1056/nejmc081884
[3]  Abubakar I, Zignol M, Falzon D, Raviglione M, Ditiu L, et al. (2013) Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infect Dis 13: 285–287. doi: 10.1016/s1473-3099(13)70030-6
[4]  Palomino JC, Martin A (2013) Is repositioning of drugs a viable alternative in the treatment of tuberculosis? J Antimicrob Chemother 68: 275–283. doi: 10.1093/jac/dks405
[5]  Kinnings SL, Xie L, Fung KH, Jackson RM, Bourne PE (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol 6: e1000976. doi: 10.1371/journal.pcbi.1000976
[6]  Garijo D, Kinnings S, Xie L, Zhang Y, Bourne PE, et al. (2013) Quantifying reproducibility in computational biology: the case of the tuberculosis drugome. PLOS ONE 8: e80278. doi: 10.1371/journal.pone.0080278
[7]  Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, et al. (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380: 986–993. doi: 10.1016/s0140-6736(12)61080-0
[8]  Castelnuovo B (2010) A review of compliance to anti tuberculosis treatment and risk factors for defaulting treatment in Sub Saharan Africa. Afr Health Sci 10: 320–324.
[9]  Elbireer S, Guwatudde D, Mudiope P, Nabbuye-Sekandi J, Manabe YC (2011) Tuberculosis treatment default among HIV-TB co-infected patients in urban Uganda. Trop Med Int Health 16: 981–987. doi: 10.1111/j.1365-3156.2011.02800.x
[10]  Macingwana L, Baker B, Ngwane AH, Harper C, Cotton MF, et al. (2012) Sulfamethoxazole enhances the antimycobacterial activity of rifampicin. J Antimicrob Chemother 67: 2908–2911. doi: 10.1093/jac/dks306
[11]  Magnet S, Hartkoorn RC, Szekely R, Pato J, Triccas JA, et al. (2010) Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb) 90: 354–360. doi: 10.1016/j.tube.2010.09.001
[12]  Reynolds RC, Ananthan S, Faaleolea E, Hobrath JV, Kwong CD, et al. (2012) High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb) 92: 72–83. doi: 10.1016/j.tube.2011.05.005
[13]  Ekins S, Reynolds RC, Franzblau SG, Wan B, Freundlich JS, et al. (2013) Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLOS ONE 8: e63240. doi: 10.1371/journal.pone.0063240
[14]  Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, et al. (2004) Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res 10: 2336–2343. doi: 10.1158/1078-0432.ccr-03-0538
[15]  Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC (1991) Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 19: 36–43.
[16]  Zhao XJ, Jones DR, Wang YH, Grimm SW, Hall SD (2002) Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 32: 863–878. doi: 10.1080/00498250210158230
[17]  Liu K, Li F, Lu J, Gao Z, Klaassen CD, et al. (2014) Role of CYP3A in Isoniazid Metabolism In Vivo. Drug Metab Pharmacokinet 29: 219–222. doi: 10.2133/dmpk.dmpk-13-nt-089
[18]  Nencini C, Barberi L, Runci FM, Micheli L (2008) Retinopathy induced by drugs and herbal medicines. Eur Rev Med Pharmacol Sci 12: 293–298.
[19]  Harmsen S, Meijerman I, Febus CL, Maas-Bakker RF, Beijnen JH, et al. (2010) PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol 66: 765–771. doi: 10.1007/s00280-009-1221-4
[20]  Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, et al. (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45: 1183–1189. doi: 10.1038/ng.2747
[21]  Penuelas-Urquides K, Villarreal-Trevino L, Silva-Ramirez B, Rivadeneyra-Espinoza L, Said-Fernandez S, et al. (2013) Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units. Braz J Microbiol 44: 287–289. doi: 10.1590/s1517-83822013000100042
[22]  Myers JA, Curtis BS, Curtis WR (2013) Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys 6: 4. doi: 10.1186/2046-1682-6-4
[23]  Issa NT, Byers SW, Dakshanamurthy S (2013) Drug repurposing: translational pharmacology, chemistry, computers and the clinic. Curr Top Med Chem 13: 2328–2336. doi: 10.2174/15680266113136660163
[24]  Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66: 334–395. doi: 10.1124/pr.112.007336
[25]  Garcia-Sosa AT, Maran U, Hetenyi C (2012) Molecular property filters describing pharmacokinetics and drug binding. Curr Med Chem 19: 1646–1662. doi: 10.2174/092986712799945021
[26]  Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, et al. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34: D668–672. doi: 10.1093/nar/gkj067
[27]  Xie L, Bourne PE (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics 25: i305–312. doi: 10.1093/bioinformatics/btp220
[28]  Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66: 1417–1430. doi: 10.1093/jac/dkr173
[29]  Almond-Roesler B, Blume-Peytavi U, Bisson S, Krahn M, Rohloff E, et al. (1998) Monitoring of isotretinoin therapy by measuring the plasma levels of isotretinoin and 4-oxo-isotretinoin. A useful tool for management of severe acne. Dermatology 196: 176–181. doi: 10.1159/000017856
[30]  Wellby M, O'Halloran MW (1966) Measurement of the plasma free thyroxine level as a test of thyroid function. Br Med J 2: 668–670. doi: 10.1136/bmj.2.5515.668
[31]  Howell SK, Wang YM, Hosoya R, Sutow WW (1980) Plasma methotrexate as determined by liquid chromatography, enzyme-inhibition assay, and radioimmunoassay after high-dose infusion. Clin Chem 26: 734–737.
[32]  Nichols KC, Schenkel L, Benson H (1984) 17 beta-estradiol for postmenopausal estrogen replacement therapy. Obstet Gynecol Surv 39: 230–245. doi: 10.1097/00006254-198404000-00022
[33]  Ruslami R, Nijland H, Aarnoutse R, Alisjahbana B, Soeroto AY, et al. (2006) Evaluation of high- versus standard-dose rifampin in Indonesian patients with pulmonary tuberculosis. Antimicrob Agents Chemother 50: 822–823. doi: 10.1128/aac.50.2.822-823.2006
[34]  Nishikawa N, Nagai M, Moritoyo T, Yabe H, Nomoto M (2009) Plasma amantadine concentrations in patients with Parkinson's disease. Parkinsonism Relat Disord 15: 351–353. doi: 10.1016/j.parkreldis.2008.08.005
[35]  Czock D, Keller F, Heringa M, Rasche FM (2005) Raloxifene pharmacokinetics in males with normal and impaired renal function. Br J Clin Pharmacol 59: 479–482. doi: 10.1111/j.1365-2125.2004.02326.x
[36]  Macquaire V, Cantraine F, Schmartz D, Coussaert E, Barvais L (2002) Target-controlled infusion of propofol induction with or without plasma concentration constraint in high-risk adult patients undergoing cardiac surgery. Acta Anaesthesiol Scand 46: 1010–1016. doi: 10.1034/j.1399-6576.2002.460814.x
[37]  Letendre SL, Capparelli EV, Ellis RJ, McCutchan JA (2000) Indinavir population pharmacokinetics in plasma and cerebrospinal fluid. The HIV Neurobehavioral Research Center Group. Antimicrob Agents Chemother 44: 2173–2175. doi: 10.1128/aac.44.8.2173-2175.2000
[38]  Gatti G, Di Biagio A, Casazza R, De Pascalis C, Bassetti M, et al. (1999) The relationship between ritonavir plasma levels and side-effects: implications for therapeutic drug monitoring. AIDS 13: 2083–2089. doi: 10.1097/00002030-199910220-00011
[39]  Yilmaz A, Izadkhashti A, Price RW, Mallon PW, De Meulder M, et al. (2009) Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retroviruses 25: 457–461. doi: 10.1089/aid.2008.0216
[40]  Seminari E, Gentilini G, Galli L, Hasson H, Danise A, et al. (2005) Higher plasma lopinavir concentrations are associated with a moderate rise in cholestasis markers in HIV-infected patients. J Antimicrob Chemother 56: 790–792. doi: 10.1093/jac/dki314
[41]  Joyce DA, Day RO (1990) D-penicillamine and D-penicillamine-protein disulphide in plasma and synovial fluid of patients with rheumatoid arthritis. Br J Clin Pharmacol 30: 511–517. doi: 10.1111/j.1365-2125.1990.tb03808.x
[42]  Marzolini C, Buclin T, Decosterd LA, Biollaz J, Telenti A (2001) Nelfinavir plasma levels under twice-daily and three-times-daily regimens: high interpatient and low intrapatient variability. Ther Drug Monit 23: 394–398. doi: 10.1097/00007691-200108000-00012
[43]  Hempen C, Elfering S, Mulder AH, van den Bergh FA, Maatman RG (2012) Dexamethasone suppression test: development of a method for simultaneous determination of cortisol and dexamethasone in human plasma by liquid chromatography/tandem mass spectrometry. Ann Clin Biochem 49: 170–176. doi: 10.1258/acb.2011.011004
[44]  Jekarl DW, Lee SY, Lee S, Park YJ, Lee J, et al. (2012) Comparison of the Bactec Fx Plus, Mycosis IC/F, Mycosis/F Lytic blood culture media and the BacT/Alert 3D FA media for detection of Candida species in seeded blood culture specimens containing therapeutic peak levels of fluconazole. J Clin Lab Anal 26: 412–419. doi: 10.1002/jcla.21535
[45]  Rylance GW, George RH, Healing DE, Roberts DG (1985) Single dose pharmacokinetics of trimethoprim. Arch Dis Child 60: 29–33. doi: 10.1136/adc.60.1.29
[46]  Donehower RC, Karp JE, Burke PJ (1986) Pharmacology and toxicity of high-dose cytarabine by 72-hour continuous infusion. Cancer Treat Rep 70: 1059–1065.
[47]  Overdiek HW, Hermens WA, Merkus FW (1985) New insights into the pharmacokinetics of spironolactone. Clin Pharmacol Ther 38: 469–474. doi: 10.1038/clpt.1985.206
[48]  Emori HW, Paulus H, Bluestone R, Champion GD, Pearson C (1976) Indomethacin serum concentrations in man. Effects of dosage, food, and antacid. Ann Rheum Dis 35: 333–338. doi: 10.1136/ard.35.4.333
[49]  Cioffi M, Gazzerro P, Vietri MT, Magnetta R, Durante A, et al. (2001) Serum concentration of free T3, free T4 and TSH in healthy children. J Pediatr Endocrinol Metab 14: 1635–1639. doi: 10.1515/jpem.2001.14.9.1635
[50]  Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 44: 883–887. doi: 10.1515/cclm.2006.160

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133