全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Cellulosic Biomass Pretreatment and Sugar Yields as a Function of Biomass Particle Size

DOI: 10.1371/journal.pone.0100836

Full-Text   Cite this paper   Add to My Lib

Abstract:

Three lignocellulosic pretreatment techniques (ammonia fiber expansion, dilute acid and ionic liquid) are compared with respect to saccharification efficiency, particle size and biomass composition. In particular, the effects of switchgrass particle size (32–200) on each pretreatment regime are examined. Physical properties of untreated and pretreated samples are characterized using crystallinity, surface accessibility measurements and scanning electron microscopy (SEM) imaging. At every particle size tested, ionic liquid (IL) pretreatment results in greater cell wall disruption, reduced crystallinity, increased accessible surface area, and higher saccharification efficiencies compared with dilute acid and AFEX pretreatments. The advantages of using IL pretreatment are greatest at larger particle sizes (>75 μm).

References

[1]  Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering 2: 121–145 doi:10.1146/annurev-chembioeng-061010-114205.
[2]  Carroll A, Somerville C (2009) Cellulosic Biofuels. Annu Rev Plant Biol 60: 165–182 doi:10.1146/annurev.arplant.043008.092125.
[3]  Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnology Journal 6: 1086–1102 doi:10.1002/biot.201000180.
[4]  Li C, Knierim B, Manisseri C, Arora R, Scheller HV, et al. (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101: 4900–4906 doi:10.1016/j.biortech.2009.10.066.
[5]  Li C, Cheng G, Balan V, Kent MS, Ong M, et al. (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology 102: 6928–6936 doi:10.1016/j.biortech.2011.04.005.
[6]  Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining 5: 562–569 doi:10.1002/bbb.303.
[7]  Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering 96: 219–231 doi:10.1002/bit.21132.
[8]  Dasari R, Berson RE (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Applied Biochemistry and Biotechnology 137–140: 289–299 doi:10.1007/s12010-007-9059-x.
[9]  Yeh A-I, Huang Y-C, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers 79: : 192–199. doi:10.1016/j.carbpol.2009.07.049.
[10]  Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2010) Lignocellulosic Biomass Pretreatment Using AFEX. In: Mielenz JR, editor. Biofuels. Methods in Molecular Biology. Humana Press, Vol. 581. pp. 61–77. Available: http://www.springerlink.com/content/x686?q61m37620016/abstract/. Accessed 31 August 2012.
[11]  Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al.. (2008) Determination of structural carbohydrates and lignin in biomass.
[12]  Miller GL (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31: 426–428 doi:10.1021/ac60147a030.
[13]  Brunauer S, Emmett PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 60: 309–319 doi:10.1021/ja01269a023.
[14]  Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, et al. (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125: 198–209 doi:10.1016/j.jbiotec.2006.02.021.
[15]  Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, et al. (2011) Lignin content in natural Populus variants affects sugar release. PNAS 108: 6300–6305 doi:10.1073/pnas.1009252108.
[16]  Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 88: 797–824 doi:10.1002/bit.20282.
[17]  Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology 100: 3948–3962 doi:10.1016/j.biortech.2009.01.075.
[18]  Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, et al. (2012) Impact of Ionic Liquid Pretreatment Conditions on Cellulose Crystalline Structure Using 1-Ethyl-3-methylimidazolium Acetate. J Phys Chem B 116: 10049–10054 doi:10.1021/jp304538v.
[19]  Liu H, Cheng G, Kent M, Stavila V, Simmons BA, et al. (2012) Simulations Reveal Conformational Changes of Methylhydroxyl Groups during Dissolution of Cellulose Iβ in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. J Phys Chem B 116: 8131–8138 doi:10.1021/jp301673h.
[20]  Papa G, Varanasi P, Sun L, Cheng G, Stavila V, et al. (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresource Technology 117: 352–359 doi:10.1016/j.biortech.2012.04.065.
[21]  Arora R, Manisseri C, Li C, Ong M, Scheller H, et al. (2010) Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass Panicum virgatum L.). BioEnergy Research 3: 134–145 doi:10.1007/s12155-010-9087-1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133