[1] | Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301: 958–960. doi: 10.1126/science.1086050
|
[2] | Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks. Phys Life Rev 2: 65–88. doi: 10.1016/j.plrev.2005.01.001
|
[3] | Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3: 78. doi: 10.1038/msb4100158
|
[4] | Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Brief Bioinform 10: 408–423. doi: 10.1093/bib/bbp028
|
[5] | D'Haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707–726. doi: 10.1093/bioinformatics/16.8.707
|
[6] | Schmittgen TD, Lee EJ, Jiang J (2008) High-throughput real-time PCR. Methods Mol Biol 429: 89–98. doi: 10.1007/978-1-60327-040-3_7
|
[7] | Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210. doi: 10.1093/nar/30.1.207
|
[8] | Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41: D991–995. doi: 10.1093/nar/gks1193
|
[9] | Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, et al. (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45: 81–94. doi: 10.2144/000112900
|
[10] | Stolovitzky G, Monroe D, Califano A (2007) Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci 1115: 1–22. doi: 10.1196/annals.1407.021
|
[11] | Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, et al. (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9: 796–804. doi: 10.1038/nmeth.2016
|
[12] | Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9: 770–780. doi: 10.1038/nrm2503
|
[13] | Bozdag S, Li A, Wuchty S, Fine HA (2010) FastMEDUSA: a parallelized tool to infer gene regulatory networks. Bioinformatics 26: 1792–1793. doi: 10.1093/bioinformatics/btq275
|
[14] | Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868. doi: 10.1073/pnas.95.25.14863
|
[15] | Schmitt WA Jr, Raab RM, Stephanopoulos G (2004) Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14: 1654–1663. doi: 10.1101/gr.2439804
|
[16] | Shaw OJ, Harwood C, Steggles LJ, Wipat A (2004) SARGE: a tool for creation of putative genetic networks. Bioinformatics 20: 3638–3640. doi: 10.1093/bioinformatics/bth395
|
[17] | Wahde M, Hertz J (2000) Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55: 129–136. doi: 10.1016/s0303-2647(99)00090-8
|
[18] | Vohradsky J, Ramsden JJ (2001) Genome resource utilization during prokaryotic development. FASEB J 15: 2054–2056. doi: 10.1096/fj.00-0889fje
|
[19] | Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput: 437–449.
|
[20] | Nazri A, Lio P (2012) Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context. PLoS One 7: e28713. doi: 10.1371/journal.pone.0028713
|
[21] | Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A 107: 6286–6291. doi: 10.1073/pnas.0913357107
|
[22] | Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinformatics 8 Suppl 6S5. doi: 10.1186/1471-2105-8-s6-s5
|
[23] | di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, et al. (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23: 377–383. doi: 10.1038/nbt1075
|
[24] | Haury AC, Mordelet F, Vera-Licona P, Vert JP (2012) TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst Biol 6: 145. doi: 10.1186/1752-0509-6-145
|
[25] | Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2: 268–279. doi: 10.1038/35066056
|
[26] | Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 97: 12182–12186. doi: 10.1073/pnas.220392197
|
[27] | Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1S7. doi: 10.1186/1471-2105-7-s1-s7
|
[28] | Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5: e8. doi: 10.1371/journal.pbio.0050008
|
[29] | Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol: 79879.
|
[30] | Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4: 132. doi: 10.1186/1752-0509-4-132
|
[31] | Bazil JN, Qi F, Beard DA (2011) A parallel algorithm for reverse engineering of biological networks. Integr Biol (Camb) 3: 1215–1223. doi: 10.1039/c1ib00117e
|
[32] | Franco D, Lamers WH, Moorman AF (1998) Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc Res 38: 25–53. doi: 10.1016/s0008-6363(97)00321-0
|
[33] | Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037–1048. doi: 10.1016/j.cell.2006.09.003
|
[34] | Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, et al. (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204: 405–420. doi: 10.1084/jem.20061916
|
[35] | Chiriac A, Nelson TJ, Faustino RS, Behfar A, Terzic A (2010) Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network. PLoS One 5: e9943. doi: 10.1371/journal.pone.0009943
|
[36] | Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, et al. (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics 44: 518–541. doi: 10.1152/physiolgenomics.00013.2012
|
[37] | Li X, Martinez-Fernandez A, Hartjes KA, Kocher JP, Olson TM, et al.. (2014) Transcriptional Atlas of Cardiogenesis Maps Congenital Heart Disease Interactome. Physiol Genomics.
|
[38] | Mistry M, Pavlidis P (2008) Gene Ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9: 327. doi: 10.1186/1471-2105-9-327
|
[39] | Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193. doi: 10.1093/bioinformatics/19.2.185
|
[40] | Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, et al. (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316: 524–537. doi: 10.1016/j.ydbio.2008.01.037
|
[41] | Bounova G, de Weck O (2012) Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys Rev E Stat Nonlin Soft Matter Phys 85: 016117. doi: 10.1103/physreve.85.016117
|
[42] | Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, et al. (2012) A travel guide to Cytoscape plugins. Nat Methods 9: 1069–1076. doi: 10.1038/nmeth.2212
|
[43] | Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, et al. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: 1091–1093. doi: 10.1093/bioinformatics/btp101
|
[44] | Zoubarev A, Hamer KM, Keshav KD, McCarthy EL, Santos JR, et al. (2012) Gemma: a resource for the reuse, sharing and meta-analysis of expression profiling data. Bioinformatics 28: 2272–2273. doi: 10.1093/bioinformatics/bts430
|
[45] | Kohonen T (1990) Cortical maps. Nature 346: 24. doi: 10.1038/346024b0
|
[46] | Kangas JA, Kohonen TK, Laaksonen JT (1990) Variants of self-organizing maps. IEEE Trans Neural Netw 1: 93–99. doi: 10.1109/72.80208
|
[47] | Popescu M, Keller JM, Mitchell JA (2006) Fuzzy measures on the Gene Ontology for gene product similarity. IEEE/ACM Trans Comput Biol Bioinform 3: 263–274. doi: 10.1109/tcbb.2006.37
|
[48] | Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1: 54. doi: 10.1186/1752-0509-1-54
|
[49] | Bazil JN, Buzzard GT, Rundell AE (2012) A global parallel model based design of experiments method to minimize model output uncertainty. Bull Math Biol 74: 688–716. doi: 10.1007/s11538-011-9686-9
|
[50] | Donahue MM, Buzzard GT, Rundell AE (2010) Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids. IET Syst Biol 4: 249–262. doi: 10.1049/iet-syb.2009.0031
|
[51] | Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning. Pittsburgh, Pennsylvania: ACM. pp. 233–240.
|
[52] | Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101–113. doi: 10.1038/nrg1272
|
[53] | Holtzinger A, Evans T (2005) Gata4 regulates the formation of multiple organs. Development 132: 4005–4014. doi: 10.1242/dev.01978
|
[54] | Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, et al. (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115: 1522–1531. doi: 10.1172/jci23769
|
[55] | Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, et al. (2006) Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98: 837–845. doi: 10.1161/01.res.0000215985.18538.c4
|
[56] | Prall OW, Elliott DA, Harvey RP (2002) Developmental paradigms in heart disease: insights from tinman. Ann Med 34: 148–156. doi: 10.1080/713782134
|
[57] | Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91: 212–222. doi: 10.1093/cvr/cvr112
|
[58] | Okuda Y, Ogura E, Kondoh H, Kamachi Y (2010) B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet 6: e1000936. doi: 10.1371/journal.pgen.1000936
|
[59] | Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M (2006) The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 63: 268–284. doi: 10.1007/s00018-005-5438-z
|
[60] | Booth HA, Holland PW (2004) Eleven daughters of NANOG. Genomics 84: 229–238. doi: 10.1016/j.ygeno.2004.02.014
|
[61] | Briegel KJ, Joyner AL (2001) Identification and characterization of Lbh, a novel conserved nuclear protein expressed during early limb and heart development. Dev Biol 233: 291–304. doi: 10.1006/dbio.2001.0225
|
[62] | Li R, Pei H, Watson DK (2000) Regulation of Ets function by protein - protein interactions. Oncogene 19: 6514–6523. doi: 10.1038/sj.onc.1204035
|
[63] | Verger A, Duterque-Coquillaud M (2002) When Ets transcription factors meet their partners. Bioessays 24: 362–370. doi: 10.1002/bies.10068
|
[64] | Shimada K, Nakamura M, Anai S, De Velasco M, Tanaka M, et al. (2009) A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res 69: 3157–3164. doi: 10.1158/0008-5472.can-08-3530
|
[65] | Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16: 5687–5696. doi: 10.1093/emboj/16.18.5687
|
[66] | Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, et al. (2008) Sox18 and Sox7 play redundant roles in vascular development. Blood 111: 2657–2666. doi: 10.1182/blood-2007-07-100412
|
[67] | Zhang C, Basta T, Klymkowsky MW (2005) SOX7 and SOX18 are essential for cardiogenesis in Xenopus. Developmental Dynamics 234: 878–891. doi: 10.1002/dvdy.20565
|
[68] | Perdomo J, Jiang XM, Carter DR, Khachigian LM, Chong BH (2012) SUMOylation Regulates the Transcriptional Repression Activity of FOG-2 and Its Association with GATA-4. PLoS One 7. doi: 10.1371/journal.pone.0050637
|
[69] | Lu JR, McKinsey TA, Xu HT, Wang DZ, Richardson JA, et al. (1999) FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Molecular and Cellular Biology 19: 4495–4502.
|
[70] | Riazi AM, Takeuchi JK, Hornberger LK, Zaidi SH, Amini F, et al.. (2009) NKX2-5 Regulates the Expression of beta-Catenin and GATA4 in Ventricular Myocytes. PLoS One 4..
|
[71] | Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJP, et al. (2003) Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology 262: 206–224. doi: 10.1016/s0012-1606(03)00385-3
|
[72] | Schachterle W, Rojas A, Xu SM, Black BL (2012) ETS-dependent regulation of a distal Gata4 cardiac enhancer. Dev Biol 361: 439–449. doi: 10.1016/j.ydbio.2011.10.023
|
[73] | Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, et al. (2012) Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens 25: 690–696. doi: 10.1038/ajh.2012.17
|
[74] | Kapoor N, Liang W, Marban E, Cho HC (2013) Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol 31: 54–62. doi: 10.1038/nbt.2465
|
[75] | Groh WJ (2012) Arrhythmias in the muscular dystrophies. Heart Rhythm 9: 1890–1895. doi: 10.1016/j.hrthm.2012.06.038
|
[76] | Chang B, Kustra R, Tian W (2013) Functional-network-based gene set analysis using gene-ontology. PLoS One 8: e55635. doi: 10.1371/journal.pone.0055635
|
[77] | Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, et al. (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582: 675–693. doi: 10.1113/jphysiol.2006.126714
|
[78] | Civelek M, Grant GR, Irolla CR, Shi C, Riley RJ, et al. (2010) Prelesional arterial endothelial phenotypes in hypercholesterolemia: universal ABCA1 upregulation contrasts with region-specific gene expression in vivo. Am J Physiol Heart Circ Physiol 298: H163–170. doi: 10.1152/ajpheart.00652.2009
|