全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Thresholds of Oxidative Stress in Newly Diagnosed Diabetic Patients on Intensive Glucose-Control Therapy

DOI: 10.1371/journal.pone.0100897

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cellular and animal studies suggest that oxidative stress could be the central defect underlying both beta-cell dysfunction and insulin resistance in type 2 diabetes mellitus. A reduction of glycemic stress in diabetic patients on therapy alleviates systemic oxidative stress and improves insulin resistance and beta-cell secretion. Monitoring oxidative stress systematically with glucose can potentially identify an individual's recovery trajectory. To determine a quantitative model of serial changes in oxidative stress, as measured via the antioxidant glutathione, we followed patients newly diagnosed with diabetes over 8 weeks of starting anti-diabetic treatment. We developed a mathematical model which shows recovery is marked with a quantal response. For each individual the model predicts three theoretical quantities: an estimate of maximal glutathione at low stress, a glucose threshold for half-maximal glutathione, and a rate at which recovery progresses. Individual patients are seen to vary considerably in their response to glucose control. Thus, model estimates can potentially be used to determine whether an individual patient's response is better or worse than average in terms of each of these indices; they can therefore be useful in reassessing treatment strategy. We hypothesize that this method can aid the personalization of effective targets of glucose control in anti-diabetic therapy.

References

[1]  American Diabetes Association (2013) Standards of medical care in diabetes-2013. Diabetes Care 36 (suppl 1)S11–66. doi: 10.2337/dc13-s011
[2]  Raz I, Riddle MC, Rosenstock J, Buse JB, Inzucchi SE, et al. (2013) Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors' Expert Forum. Diabetes Care 36(6): 1779–88. doi: 10.2337/dc13-0512
[3]  Abdul-Ghani MA, Matsuda M, Subbah M, Jenkison CP, Richardson DK, et al. (2007) The relative contributions of insulin resistance and beta cell failure to the transition from normal to impaired glucose tolerance varies in different ethnic groups. Diabetes Metab Syndr 1: 105–112. doi: 10.1016/j.dsx.2007.02.004
[4]  Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5): 599–622. doi: 10.1210/er.2001-0039
[5]  Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440: 944–48. doi: 10.1038/nature04634
[6]  Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, et al. (2009) Insulin resistance is a cellular defense mechanism. Proc Natl Acad Sci USA 106(42): 17787–92. doi: 10.1073/pnas.0902380106
[7]  Evans JL, Maddux BA, Goldfine ID (2005) The molecular basis for oxidative stress induced insulin resistances. Antioxid. Redox Signal. 7: 1040–1052. doi: 10.1089/ars.2005.7.1040
[8]  Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, et al. (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119: 573–581. doi: 10.1172/jci37048
[9]  Chen L, Na R, Gu M, Salmon AB, Liu Y, et al. (2008) Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 7: 866–878. doi: 10.1111/j.1474-9726.2008.00432.x
[10]  Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, et al. (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 12: 668–674. doi: 10.1016/j.cmet.2010.11.004
[11]  Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865): 813–820. doi: 10.1038/414813a
[12]  Meigs JB, Larson MG, Fox CS, Keaney JF Jr, Vasan RS, et al. (2007) Association of oxidative stress, insulin resistance, and Diabetic risk phenotypes: the Framingham Offspring Study. Diabetes care 30(10): 2529–35. doi: 10.2337/dc07-0817
[13]  Paolisso G, Giugliano D, Pizza G, Gambardella A, Tesauro P, et al. (1992) Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15(1): 1–6. doi: 10.2337/diacare.15.1.1
[14]  Bensellam M, Laybutt DR, Jonas JC (2012) The molecular mechanisms of pancreatic β-cell glucotoxicity: Recent findings and future research directions. Mol Cell Endocrinol 364(1–2): 1–27. doi: 10.1016/j.mce.2012.08.003
[15]  Tajiri Y, Grill V (2000) Aminoguanidine exerts a β-cell function preserving effect in high-glucose cultured beta cells. International journal of Experimental Diabetes Research 1(2): 111–119. doi: 10.1155/edr.2000.111
[16]  Tanaka Y, Tran P, Harmon J, Robertson P (2002) A role for glutathione peroxidase in protecting pancreatic B-cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci USA 99: 12363–8. doi: 10.1073/pnas.192445199
[17]  Lortz S, Tiedge M (2003) Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells. Free Radic Biol Med 34: 683–8. doi: 10.1016/s0891-5849(02)01371-0
[18]  Wolf G, Aumann N, Michalska M, Bast A, Sonnemann J, et al. (2010) Peroxiredoxin III protects pancreatic β-cells from apoptosis. Journal of Endocrinology 207(2): 163–175. doi: 10.1677/joe-09-0455
[19]  Acharya JD, Pande AJ, Joshi SM, Yajnik CS, Ghaskadbi SS (2014) Treatment of hyperglycaemia in newly diagnosed diabetic patients is associated with a reduction in oxidative stress and improvement in β-cell function. Diabetes/Metabolism Research and Review (in press).
[20]  Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, et al. (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28(4): 625–35. doi: 10.1016/s0891-5849(99)00275-0
[21]  Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11): 1191–212. doi: 10.1016/s0891-5849(01)00480-4
[22]  Paolisso G, Giugliano D, Pizza G, Gambardella A, Tesauro P, et al. (1992) Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15: 1–7. doi: 10.2337/diacare.15.1.1
[23]  Paolisso G, Di Maro G, Pizza G, D'Amore A, Sgambato S, et al. (1992) Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin dependent diabetics. Am J Physiol 263: E435–40.
[24]  Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Meth Enzymol 77: 373–82. doi: 10.1016/s0076-6879(81)77050-2
[25]  The Oxford Centre for Diabetes, Endocrinology and Metabolism, Diabetes Trials Unit. HOMA calculator. Available: http://www.dtu.ox.ac.uk. Accessed 2013 March 15.
[26]  Meister A (1995) Glutathione metabolism. Meth Enzymol 251: 3–7.
[27]  Eizirik DL, Cardozo AK, Cnop M (2008) The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocr Rev 29(1): 42–61. doi: 10.1210/er.2007-0015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133