全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Computational Approach to Estimate Interorgan Metabolic Transport in a Mammal

DOI: 10.1371/journal.pone.0100963

Full-Text   Cite this paper   Add to My Lib

Abstract:

In multicellular organisms metabolism is distributed across different organs, each of which has specific requirements to perform its own specialized task. But different organs also have to support the metabolic homeostasis of the organism as a whole by interorgan metabolite transport. Recent studies have successfully reconstructed global metabolic networks in tissues and cell types and attempts have been made to connect organs with interorgan metabolite transport. Instead of these complicated approaches to reconstruct global metabolic networks, we proposed in this study a novel approach to study interorgan metabolite transport focusing on transport processes mediated by solute carrier (Slc) transporters and their couplings to cognate enzymatic reactions. We developed a computational approach to identify and score potential interorgan metabolite transports based on the integration of metabolism and transports in different organs in the adult mouse from quantitative gene expression data. This allowed us to computationally estimate the connectivity between 17 mouse organs via metabolite transport. Finally, by applying our method to circadian metabolism, we showed that our approach can shed new light on the current understanding of interorgan metabolite transport at a whole-body level in mammals.

References

[1]  Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203: 229–248. doi: 10.1006/jtbi.2000.1073
[2]  Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences 104: 1777–1782. doi: 10.1073/pnas.0610772104
[3]  Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, et al.. (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol.
[4]  Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BO (2010) A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 4: 140. doi: 10.1186/1752-0509-4-140
[5]  Capel F, Klimcakova E, Viguerie N, Roussel B, Vitkova M, et al. (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58: 1558–1567. doi: 10.2337/db09-0033
[6]  Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320. doi: 10.1038/msb.2009.77
[7]  Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4: e1000082. doi: 10.1371/journal.pcbi.1000082
[8]  Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–1010. doi: 10.1038/nbt.1487
[9]  Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6: 401. doi: 10.1038/msb.2010.56
[10]  Gille C, Bolling C, Hoppe A, Bulik S, Hoffmann S, et al. (2010) HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol 6: 411. doi: 10.1038/msb.2010.62
[11]  Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7: 501. doi: 10.1038/msb.2011.35
[12]  Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7: 198–210. doi: 10.1038/nrm1857
[13]  Bordbar A, Palsson BO (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271: 131–141. doi: 10.1111/j.1365-2796.2011.02494.x
[14]  Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6: 153. doi: 10.1186/1752-0509-6-153
[15]  Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, et al. (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5: 180. doi: 10.1186/1752-0509-5-180
[16]  Moraes TF, Reithmeier RA (2012) Membrane transport metabolons. Biochim Biophys Acta 1818: 2687–2706. doi: 10.1016/j.bbamem.2012.06.007
[17]  Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8: 565. doi: 10.1038/msb.2011.99
[18]  Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277–280. doi: 10.1093/nar/gkh063
[19]  Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: 213. doi: 10.1186/1471-2105-11-213
[20]  Najman L, Couprie M. Quasilinear algorithm for the component tree. 2004: 98–107. doi: 10.1117/12.526592
[21]  Bean GJ, Ideker T (2012) Differential analysis of high-throughput quantitative genetic interaction data. Genome Biol 13: R123. doi: 10.1186/gb-2012-13-12-r123
[22]  Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1S233–240. doi: 10.1093/bioinformatics/18.suppl_1.s233
[23]  van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 79: 185–197.
[24]  Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27: 136–142. doi: 10.1111/j.1464-5491.2009.02894.x
[25]  Dantzler WH, Silbernagl S (1988) Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am J Physiol 255: F397–407.
[26]  Biolo G, Zhang XJ, Wolfe RR (1995) Role of membrane transport in interorgan amino acid flow between muscle and small intestine. Metabolism 44: 719–724. doi: 10.1016/0026-0495(95)90183-3
[27]  Cori CF (1981) The glucose-lactic acid cycle and gluconeogenesis. Curr Top Cell Regul 18: 377–387. doi: 10.1016/b978-0-12-152818-8.50028-1
[28]  van de Poll MC, Siroen MP, van Leeuwen PA, Soeters PB, Melis GC, et al. (2007) Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 85: 167–172.
[29]  Brosnan JT (2003) Interorgan amino acid transport and its regulation. J Nutr 133: 2068S–2072S.
[30]  Dejong CH, Welters CF, Deutz NE, Heineman E, Soeters PB (1998) Renal arginine metabolism in fasted rats with subacute short bowel syndrome. Clin Sci (Lond) 95: 409–418. doi: 10.1042/cs19980002
[31]  Dejong CH, Deutz NE, Soeters PB (1993) Metabolic adaptation of the kidney to hyperammonemia during chronic liver insufficiency in the rat. Hepatology 18: 890–902. doi: 10.1002/hep.1840180422
[32]  Silbernagl S (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68: 911–1007.
[33]  Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65: 1162–1173. doi: 10.1172/jci109771
[34]  Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, et al. (2013) Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res 23: 327–335. doi: 10.1007/s12640-012-9345-4
[35]  Snell K, Weber G (1986) Enzymic imbalance in serine metabolism in rat hepatomas. Biochem J 233: 617–620.
[36]  Brosnan JT (1987) The 1986 Borden award lecture. The role of the kidney in amino acid metabolism and nutrition. Can J Physiol Pharmacol 65: 2355–2362. doi: 10.1139/y87-373
[37]  Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35: D521–526. doi: 10.1093/nar/gkl923
[38]  Knell AJ, Davidson AR, Williams R, Kantamaneni BD, Curzon G (1974) Dopamine and serotonin metabolism in hepatic encephalopathy. Br Med J 1: 549–551. doi: 10.1136/bmj.1.5907.549
[39]  Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330: 1349–1354. doi: 10.1126/science.1195027
[40]  Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4: e1000193. doi: 10.1371/journal.pcbi.1000193
[41]  Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, et al. (2009) Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A 106: 9890–9895. doi: 10.1073/pnas.0900617106
[42]  Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, et al. (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163–173. doi: 10.1016/j.cmet.2006.07.002
[43]  Christensen HN (1982) Interorgan amino acid nutrition. Physiol Rev 62: 1193–1233.
[44]  Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, et al. (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28: 1279–1285. doi: 10.1038/nbt.1711
[45]  Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6: 422. doi: 10.1038/msb.2010.68

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133