[1] | Alle H, Geiger JR (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311: 1290–1293. doi: 10.1126/science.1119055
|
[2] | Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441: 761–765. doi: 10.1038/nature04720
|
[3] | Christie JM, Jahr CE (2008) Dendritic NMDA receptors activate axonal calcium channels. Neuron 60: 298–307. doi: 10.1016/j.neuron.2008.08.028
|
[4] | Kole MH, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55: 633–647. doi: 10.1016/j.neuron.2007.07.031
|
[5] | Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 104: 11453–11458. doi: 10.1073/pnas.0702041104
|
[6] | Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411: 587–590.
|
[7] | Sasaki T, Matsuki N, Ikegaya Y (2011) Action-potential modulation during axonal conduction. Science 331: 599–601. doi: 10.1126/science.1197598
|
[8] | Engelman HS, MacDermott AB (2004) Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 5: 135–145. doi: 10.1038/nrn1297
|
[9] | Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64: 355–405. doi: 10.1146/annurev.physiol.64.092501.114547
|
[10] | Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2: 240–250. doi: 10.1038/35067500
|
[11] | Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160: 59–87. doi: 10.1016/s0079-6123(06)60005-8
|
[12] | Miles R, Toth K, Gulyas AI, Hajos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16: 815–823. doi: 10.1016/s0896-6273(00)80101-4
|
[13] | Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293: 1159–1163. doi: 10.1126/science.1060342
|
[14] | Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562: 9–26. doi: 10.1113/jphysiol.2004.078915
|
[15] | Szabadics J, Varga C, Molnar G, Olah S, Barzo P, et al. (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311: 233–235. doi: 10.1126/science.1121325
|
[16] | Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3: 728–739. doi: 10.1038/nrn920
|
[17] | Glickfeld LL, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat Neurosci 12: 21–23. doi: 10.1038/nn.2230
|
[18] | Ruiz A, Campanac E, Scott RS, Rusakov DA, Kullmann DM (2010) Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat Neurosci 13: 431–438. doi: 10.1038/nn.2512
|
[19] | Pugh JR, Jahr CE (2011) Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci 31: 565–574. doi: 10.1523/jneurosci.4506-10.2011
|
[20] | Hu W, Shu Y (2012) Axonal bleb recording. Neurosci Bull 28: 342–350. doi: 10.1007/s12264-012-1247-1
|
[21] | Barker JL, McBurney RN, MacDonald JF (1982) Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J Physiol 322: 365–387.
|
[22] | Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6: 345–381. doi: 10.1146/annurev.bb.06.060177.002021
|
[23] | Lv XH, Zhan C, Zeng SQ, Chen WR, Luo QM (2006) Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector. Rev Sci Instrum 77.
|
[24] | Ruiz A, Fabian-Fine R, Scott R, Walker MC, Rusakov DA, et al. (2003) GABAA receptors at hippocampal mossy fibers. Neuron 39: 961–973. doi: 10.1016/s0896-6273(03)00559-2
|
[25] | Howe JR, Sutor B, Zieglgansberger W (1987) Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol 384: 539–569.
|
[26] | Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6: 347–470. doi: 10.1002/(sici)1098-1063(1996)6:4<347::aid-hipo1>3.0.co;2-i
|
[27] | Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26: 113–135. doi: 10.1016/s0165-0173(97)00061-1
|
[28] | Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28: 927–939. doi: 10.1016/s0896-6273(00)00164-1
|
[29] | Augustine GJ (1990) Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol 431: 343–364.
|
[30] | Trigo FF, Marty A, Stell BM (2008) Axonal GABAA receptors. Eur J Neurosci 28: 841–848. doi: 10.1111/j.1460-9568.2008.06404.x
|
[31] | Eccles JC, Eccles RM, Magni F (1961) Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol 159: 147–166.
|
[32] | Turecek R, Trussell LO (2002) Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc Natl Acad Sci U S A 99: 13884–13889. doi: 10.1073/pnas.212419699
|
[33] | Pouzat C, Marty A (1999) Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J Neurosci 19: 1675–1690.
|
[34] | Tachibana M, Kaneko A (1987) gamma-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc Natl Acad Sci U S A 84: 3501–3505. doi: 10.1073/pnas.84.10.3501
|
[35] | Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5: 304–316. doi: 10.1038/nrn1397
|
[36] | Christie JM, Jahr CE (2009) Selective expression of ligand-gated ion channels in L5 pyramidal cell axons. J Neurosci 29: 11441–11450. doi: 10.1523/jneurosci.2387-09.2009
|
[37] | Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, et al. (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28: 4635–4639. doi: 10.1523/jneurosci.0908-08.2008
|
[38] | Golding NL, Oertel D (1996) Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus. J Neurosci 16: 2208–2219.
|
[39] | Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86: 2887–2895.
|
[40] | Chavas J, Marty A (2003) Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci 23: 2019–2031.
|
[41] | Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387: 598–603. doi: 10.1038/42468
|
[42] | Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26: 199–206. doi: 10.1016/s0166-2236(03)00068-7
|
[43] | Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87: 1215–1284. doi: 10.1152/physrev.00017.2006
|
[44] | Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20: 7657–7663.
|
[45] | Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, et al. (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87: 33–46. doi: 10.1016/j.pbiomolbio.2004.06.003
|
[46] | Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129: 1–37. doi: 10.1007/s002210050933
|
[47] | Cattaert D, El Manira A (1999) Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J Neurosci 19: 6079–6089.
|
[48] | Segev I (1990) Computer study of presynaptic inhibition controlling the spread of action potentials into axonal terminals. J Neurophysiol 63: 987–998.
|
[49] | Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, et al. (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32: 62–67. doi: 10.1523/jneurosci.3393-11.2012
|
[50] | Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37: 299–309. doi: 10.1016/s0896-6273(02)01146-7
|
[51] | Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17: 517–525. doi: 10.1016/0166-2236(94)90155-4
|
[52] | Mozrzymas JW (2004) Dynamism of GABA(A) receptor activation shapes the “personality” of inhibitory synapses. Neuropharmacology 47: 945–960. doi: 10.1016/j.neuropharm.2004.07.003
|
[53] | Santhakumar V, Hanchar HJ, Wallner M, Olsen RW, Otis TS (2006) Contributions of the GABAA receptor alpha6 subunit to phasic and tonic inhibition revealed by a naturally occurring polymorphism in the alpha6 gene. J Neurosci 26: 3357–3364. doi: 10.1523/jneurosci.4799-05.2006
|
[54] | Cavelier P, Hamann M, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87: 3–16. doi: 10.1016/j.pbiomolbio.2004.06.001
|
[55] | Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27: 262–269. doi: 10.1016/j.tins.2004.03.005
|
[56] | Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6: 215–229. doi: 10.1038/nrn1625
|
[57] | Shu Y, Duque A, Yu Y, Haider B, McCormick DA (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97: 746–760. doi: 10.1152/jn.00922.2006
|
[58] | Yang J, Ye M, Tian C, Yang M, Wang Y, et al. (2013) Dopaminergic modulation of axonal potassium channels and action potential waveform in pyramidal neurons of prefrontal cortex. J Physiol 591: 3233–3251. doi: 10.1113/jphysiol.2013.251058
|
[59] | Alle H, Geiger JR (2008) Analog signalling in mammalian cortical axons. Curr Opin Neurobiol. 2008/09/20 ed. 314–320.
|
[60] | Bischofberger J, Geiger JR, Jonas P (2002) Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J Neurosci 22: 10593–10602.
|