全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Phylogenomic Analysis of “Red” Genes from Two Divergent Species of the “Green” Secondary Phototrophs, the Chlorarachniophytes, Suggests Multiple Horizontal Gene Transfers from the Red Lineage before the Divergence of Extant Chlorarachniophytes

DOI: 10.1371/journal.pone.0101158

Full-Text   Cite this paper   Add to My Lib

Abstract:

The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the “green” lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of “red” genes in their nuclear genomes. To elucidate the origin of such “red” genes in chlorarachniophyte nuclear genomes, we carried out exhaustive single-gene phylogenetic analyses, including two operational taxonomic units (OTUs) that represent two divergent sister lineages of the Chlorarachniophyta, Amorphochlora amoeboformis ( = Lotharella amoeboformis; based on RNA sequences newly determined here) and Bigelowiella natans (based on the published genome sequence). We identified 10 genes of cyanobacterial origin, phylogenetic analysis of which showed the chlorarachniophytes to branch with the red lineage (red algae and/or red algal secondary or tertiary plastid-containing eukaryotes). Of the 10 genes, 7 demonstrated robust monophyly of the two chlorarachniophyte OTUs. Thus, the common ancestor of the extant chlorarachniophytes likely experienced multiple horizontal gene transfers from the red lineage. Because 4 of the 10 genes are obviously photosynthesis- and/or plastid-related, and almost all of the eukaryotic OTUs in the 10 trees possess plastids, such red genes most likely originated directly from photosynthetic eukaryotes. This situation could be explained by a possible cryptic endosymbiosis of a red algal plastid before the secondary endosymbiosis of the green algal plastid, or a long-term feeding on a single (or multiple closely related) red algal plastid-containing eukaryote(s) after the green secondary endosymbiosis.

References

[1]  Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41: 147–168. doi: 10.1146/annurev.genet.41.110306.130134
[2]  Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59: 491–517. doi: 10.1146/annurev.arplant.59.032607.092915
[3]  Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21: 809–818. doi: 10.1093/molbev/msh075
[4]  Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, et al. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52: 399–451. doi: 10.1111/j.1550-7408.2005.00053.x
[5]  Mackiewicz P, Bodyl A, Gagat P (2012) Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis. Symbiosis 58: 99–107. doi: 10.1007/s13199-012-0202-2
[6]  Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, et al. (2012) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27: 1698–1709. doi: 10.1093/molbev/msq059
[7]  Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, et al. (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3: 140–150. doi: 10.1093/gbe/evq074
[8]  Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 279: 2246–2254. doi: 10.1098/rspb.2011.2301
[9]  Archibald JM (2012) The evolution of algae by secondary and tertiary endosymbiosis. Genomic insights into the biology of algae. In: Piganeau G, editor. Genomic Insight into the Biology of Algae. 1st Edition (Advances in Botanical Research). Waltham: Academic Press. 87–118.
[10]  Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24: 54–62. doi: 10.1093/molbev/msl129
[11]  Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, et al. (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43: 1302–1309. doi: 10.1111/j.1529-8817.2007.00411.x
[12]  Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, et al. (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2: e790. doi: 10.1371/journal.pone.0000790
[13]  Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, et al. (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “upergroups”. Proc Natl Acad Sci USA 106: 3859–3864. doi: 10.1073/pnas.0807880106
[14]  Nozaki H, Yang Y, Maruyama S, Suzaki T (2012) A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the Haptophyta in analyses of multiple slowly evolving genes. PLoS ONE 7: e50827. doi: 10.1371/journal.pone.0050827
[15]  Adl SM, Simpson AG, Lane CE, Luke? J, Bass D, et al. (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59: 429–493. doi: 10.1111/j.1550-7408.2012.00644.x
[16]  Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, et al. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251. doi: 10.1073/pnas.182432999
[17]  Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5: 123–135. doi: 10.1038/nrg1271
[18]  Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20: 310–330. doi: 10.1111/j.0022-3646.1984.00310.x
[19]  Ludwig M, Gibbs SP (1989) Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J. Phycol 25: 385–394. doi: 10.1111/j.1529-8817.1989.tb00135.x
[20]  McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci U S A 91: 3690–3694. doi: 10.1073/pnas.91.9.3690
[21]  McFadden GI, Gilson PR, Hofmann CJ (1997) Division Chlorarachniophyta. In: Bhattacharya D, editor. Origins of Algae and Their Plastids. Springer-Verlag Wien New York. 175–185.
[22]  Van de Peer Y, Rensing SA, Maier UG, De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci U S A 93: 7732–7736. doi: 10.1073/pnas.93.15.7732
[23]  Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol 45: 682–687. doi: 10.1007/pl00006272
[24]  Sasa T, Takaichi S, Hatakeyama N, Watanabe MM (1992) A novel carotenoid ester, loroxanthin dodecenoate, from Pyramimonas parkeae (Prasinophyceae) and a chlorarachniophycean alga. Plant Cell Physiol 33: 921–925.
[25]  Arichbald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the seconda plastid-containing alga Bigelowiella natans. PNAS 100: 7678–7683. doi: 10.1073/pnas.1230951100
[26]  Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 62: 143–157. doi: 10.1007/s00239-004-0305-3
[27]  Yang Y, Maruyama S, Sekimoto H, Sakayama H, Nozaki H (2011) An extended phylogenetic analysis reveals ancient origin of “non-green” phosphoribulokinase genes from two lineages of “green” secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta. BMC Res Notes 4: 330. doi: 10.1186/1756-0500-4-330
[28]  Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, et al. (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492: 59–65. doi: 10.1038/nature11681
[29]  Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51: 492–508. doi: 10.1080/10635150290069913
[30]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. doi: 10.1080/10635150390235520
[31]  Shimodaira H, Hasegawa M (2010) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.
[32]  Ota S, Vaulot D (2012) Lotharella reticulosa sp. nov.: a highly reticulated network forming chlorarachniophyte from the Mediterranean Sea. Protist 163: 91–104. doi: 10.1016/j.protis.2011.02.004
[33]  Hallegraeff GM, Anderson DM, Cembella AD, Enevoldsen HO (eds) (2003) Manual on Harmful Marine Microalgae. 2nd edn. Paris: the United Nations Educational, Scientific and Cultural Organization.
[34]  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology 29: 644–652. doi: 10.1038/nbt.1883
[35]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi: 10.1093/nar/gkh340
[36]  Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
[37]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446
[38]  Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21: 1095–1109. doi: 10.1093/molbev/msh112
[39]  Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Systematic Biology 55: 195–207. doi: 10.1080/10635150500433722
[40]  Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 8: 7. doi: 10.1186/1471-2148-7-s1-s4
[41]  Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes. Genome Biol Evol 4: 795–800. doi: 10.1093/gbe/evs053
[42]  L?we J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203–206.
[43]  Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161–164. doi: 10.1038/354161a0
[44]  Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368–4373. doi: 10.1073/pnas.95.8.4368
[45]  Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, et al. (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14: 211–236. doi: 10.1105/tpc.010304
[46]  Meurer J, Plücken H, Kowallik KV, Westhoff P (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability ofphotosystem II in Arabidopsis thaliana. EMBO J 17: 5286–5297. doi: 10.1093/emboj/17.18.5286
[47]  Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, et al. (2010) Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc Natl Acad Sci USA 107: 17586–17591. doi: 10.1073/pnas.1006760107
[48]  Blake C (1997) Phosphotransfer hinges in PGK. Nature 385: 204–205. doi: 10.1038/385204a0
[49]  Pielak GJ, Miklos AC (2010) Crowding and function reunite. Proc Natl Acad Sci USA 107: 17457–17458. doi: 10.1073/pnas.1013095107
[50]  Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120: 695–704. doi: 10.1104/pp.120.3.695
[51]  Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12: 29. doi: 10.1186/1471-2148-12-29
[52]  Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, et al. (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59: 518–533. doi: 10.1093/sysbio/syq037
[53]  Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H (2011) Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 11: 105. doi: 10.1186/1471-2148-11-105
[54]  Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, et al. (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324: 1724–1726. doi: 10.1126/science.1172983
[55]  Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, et al. (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylog Evol 53: 872–880. doi: 10.1016/j.ympev.2009.08.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133