全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

DOI: 10.1371/journal.pone.0101187

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

References

[1]  van der Goes van Naters W, Carlson JR (2006) Insects as chemosensors of humans and crops. Nature 444: 302–307. doi: 10.1038/nature05403
[2]  Rutzler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191: 777–790. doi: 10.1007/s00359-005-0044-y
[3]  Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in Drosophila. Science 287: 1830–1834. doi: 10.1126/science.287.5459.1830
[4]  Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, et al. (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327–338. doi: 10.1016/s0896-6273(00)81093-4
[5]  Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60: 31–39. doi: 10.1006/geno.1999.5894
[6]  Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580. doi: 10.1006/jmbi.2000.4315
[7]  Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444: 295–301. doi: 10.1038/nature05402
[8]  Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4: e20. doi: 10.1371/journal.pbio.0040020
[9]  Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, et al. (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581: 5601–5604. doi: 10.1016/j.febslet.2007.11.007
[10]  Smart R, Kiely A, Beale M, Vargas E, Carraher C, et al. (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38: 770–780. doi: 10.1016/j.ibmb.2008.05.002
[11]  Wistrand M, Kall L, Sonnhammer EL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15: 509–521. doi: 10.1110/ps.051745906
[12]  Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, et al. (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002–1006. doi: 10.1038/nature06850
[13]  Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, et al. (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007–1011. doi: 10.1038/nature06861
[14]  Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149–162. doi: 10.1016/j.cell.2008.12.001
[15]  Croset V, Rytz R, Cummins SF, Budd A, Brawand D, et al. (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6: e1001064. doi: 10.1371/journal.pgen.1001064
[16]  Dahanukar A, Lei YT, Kwon JY, Carlson JR (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56: 503–516. doi: 10.1016/j.neuron.2007.10.024
[17]  Kent LB, Walden KK, Robertson HM (2008) The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem Senses 33: 79–93. doi: 10.1093/chemse/bjm067
[18]  Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 104: 3574–3578. doi: 10.1073/pnas.0700079104
[19]  Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15: R119–121. doi: 10.1016/j.cub.2005.02.007
[20]  Krieger J, Klink O, Mohl C, Raming K, Breer H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: 519–526. doi: 10.1007/s00359-003-0427-x
[21]  Bohbot J, Pitts RJ, Kwon HW, Rutzler M, Robertson HM, et al. (2007) Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol Biol 16: 525–537. doi: 10.1111/j.1365-2583.2007.00748.x
[22]  Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19 Suppl 1121–136. doi: 10.1111/j.1365-2583.2009.00979.x
[23]  Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16: 1395–1403. doi: 10.1101/gr.5057506
[24]  Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, et al. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol Biol 16: 107–119. doi: 10.1111/j.1365-2583.2007.00708.x
[25]  Liu Y, Gu S, Zhang Y, Guo Y, Wang G (2012) Candidate olfaction genes identified within the Helicoverpa armigera Antennal Transcriptome. PLoS One 7: e48260. doi: 10.1371/journal.pone.0048260
[26]  Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 47: 773–815. doi: 10.1146/annurev.ento.47.091201.145312
[27]  Via S, West J (2008) The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol Ecol 17: 4334–4345. doi: 10.1111/j.1365-294x.2008.03921.x
[28]  Ferrari J, Via S, Godfray HCJ (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62: 2508–2524. doi: 10.1111/j.1558-5646.2008.00468.x
[29]  Via S, Hawthorne DJ (2002) The genetic architecture of ecological specialization: correlated gene effects on host use and habitat choice in pea aphids. The American Naturalist 159: S76–S88. doi: 10.1086/338374
[30]  Schirmer S, Sengonca C, Blaeser P (2008) Influence of abiotic factors on some biological and ecological characteristics of the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) parasitizing Aphis gossypii (Sternorrhyncha: Aphididae). European Journal of Entomology 105: 121. doi: 10.14411/eje.2008.017
[31]  Smadja C, Shi P, Butlin RK, Robertson HM (2009) Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol 26: 2073–2086. doi: 10.1093/molbev/msp116
[32]  Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, et al. (2002) G protein-coupled receptors in Anopheles gambiae. Science 298: 176–178. doi: 10.1126/science.1076196
[33]  Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725–736. doi: 10.1016/s0092-8674(00)80582-6
[34]  Zwiebel LJ, Takken W (2004) Olfactory regulation of mosquito-host interactions. Insect Biochem Mol Biol 34: 645–652. doi: 10.1016/j.ibmb.2004.03.017
[35]  Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875. doi: 10.1093/bioinformatics/bti310
[36]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. doi: 10.1093/nar/22.22.4673
[37]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[38]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[39]  Krzywinski J, Wilkerson RC, Besansky NJ (2001) Toward understanding Anophelinae (Diptera, Culicidae) phylogeny: insights from nuclear single-copy genes and the weight of evidence. Syst Biol 50: 540–556. doi: 10.1080/106351501750435095
[40]  Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395: 913–917. doi: 10.1038/27692
[41]  Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E (2003) Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci 6: 803–810. doi: 10.1038/nn1091
[42]  Mayer ML, Ghosal A, Dolman NP, Jane DE (2006) Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J Neurosci 26: 2852–2861. doi: 10.1523/jneurosci.0123-06.2005
[43]  Kim H, Lee S, Jang Y (2011) Macroevolutionary patterns in the Aphidini aphids (Hemiptera: Aphididae): diversification, host association, and biogeographic origins. PLoS One 6: e24749. doi: 10.1371/journal.pone.0024749
[44]  Gereau IV RW, Swanson GT (2008) The glutamate receptors: Springer.
[45]  Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3: 91–101. doi: 10.1038/nrn725
[46]  Rebora M, Piersanti S, Gaino E (2009) The antennal sensilla of adult mayflies: Rhithrogena semicolorata as a case study. Micron 40: 571–576. doi: 10.1016/j.micron.2009.03.001
[47]  Yao CA, Ignell R, Carlson JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25: 8359–8367. doi: 10.1523/jneurosci.2432-05.2005
[48]  Birkett MA, Campbell CA, Chamberlain K, Guerrieri E, Hick AJ, et al. (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97: 9329–9334. doi: 10.1073/pnas.160241697
[49]  Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10: 269–274. doi: 10.1016/j.tplants.2005.04.003
[50]  Hegde M, Oliveira JN, da Costa JG, Bleicher E, Santana AE, et al. (2011) Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. J Chem Ecol 37: 741–750. doi: 10.1007/s10886-011-9980-x
[51]  Koczor S, Szentkiralyi F, Birkett MA, Pickett JA, Voigt E, et al. (2010) Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary. Pest Manag Sci 66: 1374–1379. doi: 10.1002/ps.2030
[52]  Quiroz A, Niemeyer H (1998) Olfactometer-assessed responses of aphid Rhopalosiphum padi to wheat and oat volatiles. Journal of chemical ecology 24: 113–124.
[53]  Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, et al. (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34: 1153–1161. doi: 10.1007/s10886-008-9510-7
[54]  Zhu J, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31: 1733–1746. doi: 10.1007/s10886-005-5923-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133