全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in Schistosoma mansoni

DOI: doi/10.1371/journal.ppat.1004181

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.

References

[1]  Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human Schistosomiasis. Lancet 368(9541): 1106–1118.
[2]  Doenhoff MJ, Hagan P, Cioli D, Southgate V, Pica-Mattoccia L, et al. (2009) Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136(13): 1825–35.
[3]  Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, et al. (2009) Reduced Susceptibility to Praziquantel among Naturally Occurring Kenyan Isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3(8): e504.
[4]  Sabah AA, Fletcher C, Webbe G, Doenhoff J (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61: 294–303.
[5]  Robertson AP, Martin RJ (2007) Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci 7(4): 209–17.
[6]  Crabtree JE, Wilson RA (1980) Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology 81(Pt 3): 553–64.
[7]  Maule AG, Day TA, Chappell CH (2005) Parasite neuromusculature and its utility as a drug target. Parasitology 131: S1–S2.
[8]  Kaminsky R, Gauvry N, Schorderet Weber S, Skripsky T, Bouvier J, et al. (2008) Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelminthic drug development candidate. Parasitol Res 103(4): 931–939.
[9]  Bueding E, Liu CL, Rogers SH (1972) Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br J Pharmacol 46(3): 480–7.
[10]  Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Res 89(1): 73–120.
[11]  van Nierop P, Keramidas A, Bertrand S, van Minnen J, Gouwenberg Y, et al. (2005) Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs. J Neurosci 25(46): 10617–10626.
[12]  Putrenko I, Zakikhani M, Dent JA (2005) A Family of Acetylcholine-gated Chloride Channel Subunits in Caenorhabditis elegans. J Biol Chem 280: 6392–6398.
[13]  Beech RN, Callanan MK, Rao VTS, Dawe GB, Forrester SG (2013) Characterization of Cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free-living nematodes. Parasitology Int 62: 599–605.
[14]  Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH (2002) Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity. J Gen Physiol 119: 393–410.
[15]  Barker LR, Bueding E, Timms AR (1966) The possible role of acetylcholine in Schistosoma mansoni. Brit J Pharmacol 26: 656–665.
[16]  Wilson CVLC, Schiller EL (1969) The neuroanatomy of Hymenolepis dimimuta and H. nana. J Parasitol 55(2): 261–70.
[17]  Day TA, Chen GZ, Miller C, Tian M, Bennett JL, Pax RA (1996) Cholinergic inhibition of muscle fibers isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology 113 (Pt. 1): 55–61.
[18]  Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358.
[19]  Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6(1): e1455.
[20]  Behm CA, Bendig MM, McCarter JP, Sluder AE (2005) RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol 21(3): 97–100.
[21]  Boyle JP, Wu XJ, Shoemaker CB, Yoshino TP (2003) Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 128(2): 205–15.
[22]  Kreutz-Peterson G, Radwanska M, Ndegua D, Shoemaker CK, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153(2): 194–202.
[23]  Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5): 635–49.
[24]  McVeigh P, Mair GR, Novozhilova E, Day A, Zamanian M, Marks NJ, Kimber MJ, Day TA, Maule AG (2011) Schistosome I/Lamides—a new family of bioactive helminth neuropeptides. Int J Parasitol 41(8): 905–13.
[25]  Patocka N, Ribeiro P (2013) The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol Biochem Parasitol 187: 32–42.
[26]  Lewis F (2001) Schistosomiasis. Current Protocols in Immunology 28: 19.1.1–19.1.28.
[27]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948.
[28]  Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.
[29]  Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing Systems (NIPS) 2007. Available: http://books.nips.cc/papers/files/nips21?/NIPS2008_0257.pdf.
[30]  Rychlik W (2007) OLIGO 7 Primer Analysis Software. In: Yuryev A, editor. Methods in Molecular Biology Vol. 402: PCR Primer Design. Totowa: Humana Press. pp 35–59.
[31]  El-Shehabi F, Taman A, Moali LS, El-Sakkary N, Ribeiro P (2012) A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Negl Trop Dis 6(2): e1523.
[32]  Gold D (1997) Assessment of the viability of Schistosoma mansoni schistosomula by comparative uptake of various vital dyes. Parasitol Res 83: 163–169.
[33]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(t)) Method. Methods 25(4): 402–8.
[34]  Mair GR, Maule AG, Day TA, Halton DW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121(Pt 2): 163–170.
[35]  Taman A, Ribeiro P (2009) Investigation of a dopamine receptor in Schistosoma mansoni: Functional studies and immunolocalization. Mol Biochem Parasitol 168: 24–33.
[36]  Collins JJ III, King RS, Cogswell A, Williams DL, Newmark PA (2011) An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy. PLoS Negl Trop Dis 5(3): e1009.
[37]  De La Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73: 758–768.
[38]  Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499: 220–224.
[39]  Johansson T, Norris T, Peilot-Sj?gren H (2013) Yellow Fluorescent Protein-Based Assay to Measure GABAA Channel Activation and Allosteric Modulation in CHO-K1 Cells. PLoS ONE 8(3): e59429.
[40]  Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8(2): 153–71.
[41]  Kruger W, Gilbert D, Hawthorne R, Hryciw DH, Frings S, Poronnik P Lynch JW (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380(3): 340–5.
[42]  Xie J, Dernovici S, Ribeiro P (2005) Mutagenesis analysis of the serotonin 5-HT2C receptor and a Caenorhabditis elegans 5HT2 homologue: Conserved residues of helix 4 and 7 contribute to agonist-dependent activation of 5HT2 receptors. J Neurochem 92: 375–387.
[43]  Nabhan J, Ribeiro P (2006) The 19S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability and subcellular localization. J Biol Chem 281: 16099–16107.
[44]  Thompson AJ, Lester HA, Lummis SCR (2010) The Structural Basis of Function in Cys-Loop Receptors. Q Rev Biophys 43(4): 449–99.
[45]  Galzi J-L, Devillers-Thiery A, Hussy N, Bertrand S, Changeux J-P, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359: 500–505.
[46]  Corringer P-J, Bertrand S, Galzi J-L, Devillers-Thiery A, Changeux J-P, Bertrand D (1999) Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22: 831–843.
[47]  Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nature Rev (Neurosc) 3: 102–114.
[48]  Kao PN, Karlin A (1996) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261(18): 8085–8088.
[49]  Ribeiro P, El-Shehabi F, Patocka N (2005) Classical transmitters and their receptors in flatworms. Parasitology (131): S19–S40.
[50]  Halton DW, Gustaffson MKS (1996) Functional morphology of the platyhelminth nervous system. Parasitology (113): S47–S72.
[51]  Nishimura K, Kitamura Y, Taniguchi T, Agata K (2010) Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neurosci 168(1): 18–30.
[52]  Reuter M, Gustafsson MKS (1995) The flatworm nervous system: Pattern and phylogeny. In The nervous systems of invertebrates: An evolutionary and comparative approach (Breidbach O, Kutsch W, eds) pp. 25–59.
[53]  Walker RJ, Franks CJ, Pemberton D, Rogers C, Holden-Dye L (2000) Physiological and pharmacological studies on nematodes. Acta Biol Hung 51(2-4): 379–94.
[54]  Butarelli FR, Pontieri FE, Margotta V, Palladini G (2000) Acetylcholine/dopamine interaction in planaria. Comp Biochem Physiol C Toxicol Pharmacol 125(2): 225–31.
[55]  Holmes FP, Fairweather I (1984) Fasciola hepatica: the effects of neuropharmacological agents in in vitro motility. Exp Parasitol 58: 194–208.
[56]  Wilson GG, Pascual JM, Brooijmans N, Murray D, Karlin A (2000) The Intrinsic Electrostatic Potential and the Intermediate Ring of Charge in the Acetylcholine Receptor Channel. J Gen Physiol 115: 93–106.
[57]  Huang Y, Chen W, Wang X, Liu H, Chen Y, et al. (2013) The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLOS One 8(1): e54732.
[58]  Barik J, Wonnacott S (2006) Indirect Modulation by _7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal. Molec Pharmacol 69(2): 618–628.
[59]  Akasu T, Ohta Y, Koketsu K (1984) Neuropeptides facilitate the desensitization of nicotinic acetylcholine-receptor in frog skeletal muscle endplate. Brain Res 290(2): 342–347.
[60]  Di Angelantonio S, Giniatullin R, Costa V, Sokolova E, Nistri A (2003) Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br J Pharmacol 139(6): 1061–73.
[61]  Halton DW, Maule AG (2004) Flatworm nerve–muscle: structural and functional analysis. Can J Zool 82(2): 316–333.
[62]  Camacho M, Alsford S, Jones A, Agnew A (1995) Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol 71: 127–1.
[63]  Camacho M, Agnew A (1995) Schistosoma: rate of glucose transport is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol 81: 584–591.
[64]  Kruger FJ, Hamilton-Attwell VL, Tiedt L, Du Preez L (1986) Further observations on an intratubercular sensory receptor of Schistosoma mattheei.. Onderstepoort J Vet Res 53(4): 239–40.
[65]  Bentley GN, Jones AK, Oliveros Parra WG, Agnew A (2004) ShAR1alpha and ShAR1beta: novel putative nicotinic acetylcholine receptor subunits from the platyhelminth blood fluke Schistosoma. Gene 329: 27–38.
[66]  Hamdan FF, Mousa A, Ribeiro P (2002) Codon optimization improves heterologous expression of a Schistosoma mansoni cDNA in HEK-293 cells. Parasitol Res 88(6): 583–6.
[67]  García-Guzmán M, Sala F, Sala S, Campos-Caro A, Criado M (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by alpha 3 and alpha 7 subunit chimeras. Biochem 33(50): 15198–203.
[68]  Raymond V, Mongan NP, Sattelle DB (2000) Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans. Neurosci 101(3): 785–91.
[69]  Le Novère N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4): 447–56.
[70]  Papke RL, Dwoskin LP (2007) Crooks (2007) The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. J Neurochem 101(1): 160–7.
[71]  Williamson SM, Robertson AP, Brown L, Williams T, Woods DJ, Martin RJ, Sattelle DB, Wolstenholme AJ (2009) The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 5(7): e1000517.
[72]  Colquhoun L, Holden-Dye L, Walker RJ (1991) The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. J Exp Biol 158: 509–530.
[73]  Trivedi S, Liu J, Ruifeng L, Bostwick R (2010) Advances in functional assays for high-throughput screening of ion channels targets. Expert Opin Drug Discov 5(10): 995–1006.
[74]  Patocka N, Sharma N, Rashid M, Ribeiro P (2014) Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement. PLoS Pathog 10(1): e1003878.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133