[1] | Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human Schistosomiasis. Lancet 368(9541): 1106–1118.
|
[2] | Doenhoff MJ, Hagan P, Cioli D, Southgate V, Pica-Mattoccia L, et al. (2009) Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136(13): 1825–35.
|
[3] | Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, et al. (2009) Reduced Susceptibility to Praziquantel among Naturally Occurring Kenyan Isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3(8): e504.
|
[4] | Sabah AA, Fletcher C, Webbe G, Doenhoff J (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61: 294–303.
|
[5] | Robertson AP, Martin RJ (2007) Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci 7(4): 209–17.
|
[6] | Crabtree JE, Wilson RA (1980) Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology 81(Pt 3): 553–64.
|
[7] | Maule AG, Day TA, Chappell CH (2005) Parasite neuromusculature and its utility as a drug target. Parasitology 131: S1–S2.
|
[8] | Kaminsky R, Gauvry N, Schorderet Weber S, Skripsky T, Bouvier J, et al. (2008) Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelminthic drug development candidate. Parasitol Res 103(4): 931–939.
|
[9] | Bueding E, Liu CL, Rogers SH (1972) Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br J Pharmacol 46(3): 480–7.
|
[10] | Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Res 89(1): 73–120.
|
[11] | van Nierop P, Keramidas A, Bertrand S, van Minnen J, Gouwenberg Y, et al. (2005) Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs. J Neurosci 25(46): 10617–10626.
|
[12] | Putrenko I, Zakikhani M, Dent JA (2005) A Family of Acetylcholine-gated Chloride Channel Subunits in Caenorhabditis elegans. J Biol Chem 280: 6392–6398.
|
[13] | Beech RN, Callanan MK, Rao VTS, Dawe GB, Forrester SG (2013) Characterization of Cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free-living nematodes. Parasitology Int 62: 599–605.
|
[14] | Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH (2002) Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity. J Gen Physiol 119: 393–410.
|
[15] | Barker LR, Bueding E, Timms AR (1966) The possible role of acetylcholine in Schistosoma mansoni. Brit J Pharmacol 26: 656–665.
|
[16] | Wilson CVLC, Schiller EL (1969) The neuroanatomy of Hymenolepis dimimuta and H. nana. J Parasitol 55(2): 261–70.
|
[17] | Day TA, Chen GZ, Miller C, Tian M, Bennett JL, Pax RA (1996) Cholinergic inhibition of muscle fibers isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology 113 (Pt. 1): 55–61.
|
[18] | Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358.
|
[19] | Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6(1): e1455.
|
[20] | Behm CA, Bendig MM, McCarter JP, Sluder AE (2005) RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol 21(3): 97–100.
|
[21] | Boyle JP, Wu XJ, Shoemaker CB, Yoshino TP (2003) Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 128(2): 205–15.
|
[22] | Kreutz-Peterson G, Radwanska M, Ndegua D, Shoemaker CK, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153(2): 194–202.
|
[23] | Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5): 635–49.
|
[24] | McVeigh P, Mair GR, Novozhilova E, Day A, Zamanian M, Marks NJ, Kimber MJ, Day TA, Maule AG (2011) Schistosome I/Lamides—a new family of bioactive helminth neuropeptides. Int J Parasitol 41(8): 905–13.
|
[25] | Patocka N, Ribeiro P (2013) The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol Biochem Parasitol 187: 32–42.
|
[26] | Lewis F (2001) Schistosomiasis. Current Protocols in Immunology 28: 19.1.1–19.1.28.
|
[27] | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948.
|
[28] | Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.
|
[29] | Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing Systems (NIPS) 2007. Available: http://books.nips.cc/papers/files/nips21?/NIPS2008_0257.pdf.
|
[30] | Rychlik W (2007) OLIGO 7 Primer Analysis Software. In: Yuryev A, editor. Methods in Molecular Biology Vol. 402: PCR Primer Design. Totowa: Humana Press. pp 35–59.
|
[31] | El-Shehabi F, Taman A, Moali LS, El-Sakkary N, Ribeiro P (2012) A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Negl Trop Dis 6(2): e1523.
|
[32] | Gold D (1997) Assessment of the viability of Schistosoma mansoni schistosomula by comparative uptake of various vital dyes. Parasitol Res 83: 163–169.
|
[33] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(t)) Method. Methods 25(4): 402–8.
|
[34] | Mair GR, Maule AG, Day TA, Halton DW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121(Pt 2): 163–170.
|
[35] | Taman A, Ribeiro P (2009) Investigation of a dopamine receptor in Schistosoma mansoni: Functional studies and immunolocalization. Mol Biochem Parasitol 168: 24–33.
|
[36] | Collins JJ III, King RS, Cogswell A, Williams DL, Newmark PA (2011) An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy. PLoS Negl Trop Dis 5(3): e1009.
|
[37] | De La Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73: 758–768.
|
[38] | Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499: 220–224.
|
[39] | Johansson T, Norris T, Peilot-Sj?gren H (2013) Yellow Fluorescent Protein-Based Assay to Measure GABAA Channel Activation and Allosteric Modulation in CHO-K1 Cells. PLoS ONE 8(3): e59429.
|
[40] | Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8(2): 153–71.
|
[41] | Kruger W, Gilbert D, Hawthorne R, Hryciw DH, Frings S, Poronnik P Lynch JW (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380(3): 340–5.
|
[42] | Xie J, Dernovici S, Ribeiro P (2005) Mutagenesis analysis of the serotonin 5-HT2C receptor and a Caenorhabditis elegans 5HT2 homologue: Conserved residues of helix 4 and 7 contribute to agonist-dependent activation of 5HT2 receptors. J Neurochem 92: 375–387.
|
[43] | Nabhan J, Ribeiro P (2006) The 19S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability and subcellular localization. J Biol Chem 281: 16099–16107.
|
[44] | Thompson AJ, Lester HA, Lummis SCR (2010) The Structural Basis of Function in Cys-Loop Receptors. Q Rev Biophys 43(4): 449–99.
|
[45] | Galzi J-L, Devillers-Thiery A, Hussy N, Bertrand S, Changeux J-P, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359: 500–505.
|
[46] | Corringer P-J, Bertrand S, Galzi J-L, Devillers-Thiery A, Changeux J-P, Bertrand D (1999) Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22: 831–843.
|
[47] | Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nature Rev (Neurosc) 3: 102–114.
|
[48] | Kao PN, Karlin A (1996) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261(18): 8085–8088.
|
[49] | Ribeiro P, El-Shehabi F, Patocka N (2005) Classical transmitters and their receptors in flatworms. Parasitology (131): S19–S40.
|
[50] | Halton DW, Gustaffson MKS (1996) Functional morphology of the platyhelminth nervous system. Parasitology (113): S47–S72.
|
[51] | Nishimura K, Kitamura Y, Taniguchi T, Agata K (2010) Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neurosci 168(1): 18–30.
|
[52] | Reuter M, Gustafsson MKS (1995) The flatworm nervous system: Pattern and phylogeny. In The nervous systems of invertebrates: An evolutionary and comparative approach (Breidbach O, Kutsch W, eds) pp. 25–59.
|
[53] | Walker RJ, Franks CJ, Pemberton D, Rogers C, Holden-Dye L (2000) Physiological and pharmacological studies on nematodes. Acta Biol Hung 51(2-4): 379–94.
|
[54] | Butarelli FR, Pontieri FE, Margotta V, Palladini G (2000) Acetylcholine/dopamine interaction in planaria. Comp Biochem Physiol C Toxicol Pharmacol 125(2): 225–31.
|
[55] | Holmes FP, Fairweather I (1984) Fasciola hepatica: the effects of neuropharmacological agents in in vitro motility. Exp Parasitol 58: 194–208.
|
[56] | Wilson GG, Pascual JM, Brooijmans N, Murray D, Karlin A (2000) The Intrinsic Electrostatic Potential and the Intermediate Ring of Charge in the Acetylcholine Receptor Channel. J Gen Physiol 115: 93–106.
|
[57] | Huang Y, Chen W, Wang X, Liu H, Chen Y, et al. (2013) The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLOS One 8(1): e54732.
|
[58] | Barik J, Wonnacott S (2006) Indirect Modulation by _7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal. Molec Pharmacol 69(2): 618–628.
|
[59] | Akasu T, Ohta Y, Koketsu K (1984) Neuropeptides facilitate the desensitization of nicotinic acetylcholine-receptor in frog skeletal muscle endplate. Brain Res 290(2): 342–347.
|
[60] | Di Angelantonio S, Giniatullin R, Costa V, Sokolova E, Nistri A (2003) Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br J Pharmacol 139(6): 1061–73.
|
[61] | Halton DW, Maule AG (2004) Flatworm nerve–muscle: structural and functional analysis. Can J Zool 82(2): 316–333.
|
[62] | Camacho M, Alsford S, Jones A, Agnew A (1995) Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol 71: 127–1.
|
[63] | Camacho M, Agnew A (1995) Schistosoma: rate of glucose transport is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol 81: 584–591.
|
[64] | Kruger FJ, Hamilton-Attwell VL, Tiedt L, Du Preez L (1986) Further observations on an intratubercular sensory receptor of Schistosoma mattheei.. Onderstepoort J Vet Res 53(4): 239–40.
|
[65] | Bentley GN, Jones AK, Oliveros Parra WG, Agnew A (2004) ShAR1alpha and ShAR1beta: novel putative nicotinic acetylcholine receptor subunits from the platyhelminth blood fluke Schistosoma. Gene 329: 27–38.
|
[66] | Hamdan FF, Mousa A, Ribeiro P (2002) Codon optimization improves heterologous expression of a Schistosoma mansoni cDNA in HEK-293 cells. Parasitol Res 88(6): 583–6.
|
[67] | García-Guzmán M, Sala F, Sala S, Campos-Caro A, Criado M (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by alpha 3 and alpha 7 subunit chimeras. Biochem 33(50): 15198–203.
|
[68] | Raymond V, Mongan NP, Sattelle DB (2000) Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans. Neurosci 101(3): 785–91.
|
[69] | Le Novère N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4): 447–56.
|
[70] | Papke RL, Dwoskin LP (2007) Crooks (2007) The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. J Neurochem 101(1): 160–7.
|
[71] | Williamson SM, Robertson AP, Brown L, Williams T, Woods DJ, Martin RJ, Sattelle DB, Wolstenholme AJ (2009) The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 5(7): e1000517.
|
[72] | Colquhoun L, Holden-Dye L, Walker RJ (1991) The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. J Exp Biol 158: 509–530.
|
[73] | Trivedi S, Liu J, Ruifeng L, Bostwick R (2010) Advances in functional assays for high-throughput screening of ion channels targets. Expert Opin Drug Discov 5(10): 995–1006.
|
[74] | Patocka N, Sharma N, Rashid M, Ribeiro P (2014) Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement. PLoS Pathog 10(1): e1003878.
|