全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Central Role for Carbon-Overflow Pathways in the Modulation of Bacterial Cell Death

DOI: doi/10.1371/journal.ppat.1004205

Full-Text   Cite this paper   Add to My Lib

Abstract:

Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC) and α-acetolactate synthase/decarboxylase (AlsSD) overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.

References

[1]  Ameisen JC (2001) The origin and evolution of programmed cell death. eLS: Wiley.
[2]  Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5: 721–726. doi: 10.1038/nrmicro1743
[3]  Rice KC, Bayles KW (2008) Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72: 85–109 table of contents. doi: 10.1128/mmbr.00030-07
[4]  Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46: 561–572. doi: 10.1016/j.molcel.2012.04.027
[5]  Bos J, Yakhnina AA, Gitai Z (2012) BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc Natl Acad Sci U S A 109: 18096–18101. doi: 10.1073/pnas.1213332109
[6]  Erental A, Sharon I, Engelberg-Kulka H (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10: e1001281. doi: 10.1371/journal.pbio.1001281
[7]  Yang SJ, Dunman PM, Projan SJ, Bayles KW (2006) Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol 60: 458–468. doi: 10.1111/j.1365-2958.2006.05105.x
[8]  Sonenshein AL (2007) Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5: 917–927. doi: 10.1038/nrmicro1772
[9]  Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, et al. (2010) Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 145: 60–65. doi: 10.1016/j.jbiotec.2009.10.007
[10]  Sadykov MR, Bayles KW (2012) The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals. Curr Opin Microbiol 15: 211–215. doi: 10.1016/j.mib.2011.12.010
[11]  Andersen JL, Kornbluth S (2013) The tangled circuitry of metabolism and apoptosis. Mol Cell 49: 399–410. doi: 10.1016/j.molcel.2012.12.026
[12]  Smith JJ, McFeters GA (1997) Mechanisms of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-ph?enyltetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12. Journal of Microbiological Methods 29: 161–175. doi: 10.1016/s0167-7012(97)00036-5
[13]  Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278: 3170–3175. doi: 10.1074/jbc.m209264200
[14]  Rezaiki L, Cesselin B, Yamamoto Y, Vido K, van West E, et al. (2004) Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53: 1331–1342. doi: 10.1111/j.1365-2958.2004.04217.x
[15]  Higuchi Y (2003) Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66: 1527–1535. doi: 10.1016/s0006-2952(03)00508-2
[16]  Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev 73: 233–248. doi: 10.1128/mmbr.00005-09
[17]  Patton TG, Rice KC, Foster MK, Bayles KW (2005) The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Mol Microbiol 56: 1664–1674. doi: 10.1111/j.1365-2958.2005.04653.x
[18]  Booth IR, Stratford M (2003) Acidulants and low pH. In: Russell NJ, Gould GW, editors. Food preservatives. 2nd ed. New York: Kluwer Academic/Plenum Publishers. 25–42 p.
[19]  Sadykov MR, Thomas VC, Marshall DD, Wenstrom CJ, Moormeier DE, et al. (2013) Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol 195: 3035–3044. doi: 10.1128/jb.00042-13
[20]  Tsang LH, Cassat JE, Shaw LN, Beenken KE, Smeltzer MS (2008) Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS One 3: e3361. doi: 10.1371/journal.pone.0003361
[21]  Tsau JL, Guffanti AA, Montville TJ (1992) Conversion of Pyruvate to Acetoin Helps To Maintain pH Homeostasis in Lactobacillus plantarum. Appl Environ Microbiol 58: 891–894.
[22]  Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415–418. doi: 10.1023/a:1009616228304
[23]  Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4: 7–13. doi: 10.1016/s1567-1356(03)00154-5
[24]  Moormeier DE, Endres JL, Mann EE, Sadykov MR, Horswill AR, et al. (2013) Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 79: 3413–3424. doi: 10.1128/aem.00395-13
[25]  Rode TM, Moretro T, Langsrud S, Langsrud O, Vogt G, et al. (2010) Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Can J Microbiol 56: 777–792. doi: 10.1139/w10-057
[26]  Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, et al. (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microbiol 75: 7426–7435. doi: 10.1128/aem.01220-09
[27]  Hunter RC, Beveridge TJ (2005) Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71: 2501–2510. doi: 10.1128/aem.71.5.2501-2510.2005
[28]  Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185: 1485–1491. doi: 10.1128/jb.185.5.1485-1491.2003
[29]  Rice KC, Nelson JB, Patton TG, Yang SJ, Bayles KW (2005) Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 187: 813–821. doi: 10.1128/jb.187.3.813-821.2005
[30]  Repizo GD, Mortera P, Magni C (2011) Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH. Microbiology 157: 2708–2719. doi: 10.1099/mic.0.047662-0
[31]  Wellen KE, Thompson CB (2012) A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 13: 270–276. doi: 10.1038/nrm3305
[32]  Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69: 12–50.
[33]  Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147: 2409–2415.
[34]  Marques C, Oliveira CS, Alves S, Chaves SR, Coutinho OP, et al. (2013) Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis 4: e507. doi: 10.1038/cddis.2013.29
[35]  Tittmann K, Golbik R, Ghisla S, Hubner G (2000) Mechanism of elementary catalytic steps of pyruvate oxidase from Lactobacillus plantarum. Biochemistry 39: 10747–10754. doi: 10.1021/bi0004089
[36]  Russell P, Hager LP, Gennis RB (1977) Characterization of the proteolytic activation of pyruvate oxidase. Control by specific ligands and by the flavin oxidation-reduction state. J Biol Chem 252: 7877–7882.
[37]  Regev-Yochay G, Trzcinski K, Thompson CM, Lipsitch M, Malley R (2007) SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. J Bacteriol 189: 6532–6539. doi: 10.1128/jb.00813-07
[38]  Dhawan VK, Yeaman MR, Cheung AL, Kim E, Sullam PM, et al. (1997) Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect Immun 65: 3293–3299.
[39]  Herzberg MC (2000) Persistence of infective endocarditis. In: Nataro JP, Blaser, M. J., Cunningham-Rundles, S., editor. Persistent bacterial infections Washington, DC: ASM Press. pp. 470.
[40]  Zhuang K, Vemuri GN, Mahadevan R (2011) Economics of membrane occupancy and respiro-fermentation. Mol Syst Biol 7: 500. doi: 10.1038/msb.2011.34
[41]  Xie Z, Schendel S, Matsuyama S, Reed JC (1998) Acidic pH promotes dimerization of Bcl-2 family proteins. Biochemistry 37: 6410–6418. doi: 10.1021/bi973052i
[42]  Furlong IJ, Ascaso R, Lopez Rivas A, Collins MK (1997) Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Sci 110(Pt 5): 653–661.
[43]  Lee CY, Buranen SL, Ye ZH (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103: 101–105. doi: 10.1016/0378-1119(91)90399-v
[44]  Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74: 6832–6838. doi: 10.1128/aem.00881-08
[45]  Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, et al. (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822. doi: 10.1371/journal.pone.0005822
[46]  Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, et al. (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395–2407.
[47]  Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, et al. (2010) Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78: 4936–4943. doi: 10.1128/iai.01118-09

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133