全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans

DOI: doi/10.1371/journal.ppat.1004200

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.

References

[1]  Williams BA (2009) Unique physiology of host-parasite interactions in microsporidia infections. Cellular microbiology 11: 1551–1560. doi: 10.1111/j.1462-5822.2009.01362.x
[2]  Didier ES (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta tropica 94: 61–76. doi: 10.1016/j.actatropica.2005.01.010
[3]  Didier ES, Weiss LM (2011) Microsporidiosis: not just in AIDS patients. Current opinion in infectious diseases 24: 490–495. doi: 10.1097/qco.0b013e32834aa152
[4]  Higes M, Martin-Hernandez R, Botias C, Bailon EG, Gonzalez-Porto AV, et al. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental microbiology 10: 2659–2669. doi: 10.1111/j.1462-2920.2008.01687.x
[5]  Kent ML, Speare DJ (2005) Review of the sequential development of Loma salmonae (Microsporidia) based on experimental infections of rainbow trout (Oncorhynchus mykiss) and Chinook salmon (O. tshawytscha). Folia parasitologica 52: 63–68. doi: 10.14411/fp.2005.009
[6]  Troemel ER (2011) New models of microsporidiosis: infections in Zebrafish, C. elegans, and honey bee. PLoS pathogens 7: e1001243. doi: 10.1371/journal.ppat.1001243
[7]  Anane S, Attouchi H (2010) Microsporidiosis: epidemiology, clinical data and therapy. Gastroenterologie clinique et biologique 34: 450–464. doi: 10.1016/j.gcb.2010.07.003
[8]  Didier ES, Maddry JA, Brindley PJ, Stovall ME, Didier PJ (2005) Therapeutic strategies for human microsporidia infections. Expert review of anti-infective therapy 3: 419–434. doi: 10.1586/14787210.3.3.419
[9]  Valencakova A, Halanova M (2012) Immune response to Encephalitozoon infection review. Comparative immunology, microbiology and infectious diseases 35: 1–7. doi: 10.1016/j.cimid.2011.11.004
[10]  Moretto MM, Khan IA, Weiss LM (2012) Gastrointestinal cell mediated immunity and the microsporidia. PLoS pathogens 8: e1002775. doi: 10.1371/journal.ppat.1002775
[11]  Roxstrom-Lindquist K, Terenius O, Faye I (2004) Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO reports 5: 207–212. doi: 10.1038/sj.embor.7400073
[12]  Troemel ER, Felix MA, Whiteman NK, Barriere A, Ausubel FM (2008) Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 6: 2736–2752. doi: 10.1371/journal.pbio.0060309
[13]  Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS biology 6: 2634–2637. doi: 10.1371/journal.pbio.1000005
[14]  Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, et al. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623–626. doi: 10.1126/science.1073759
[15]  Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I, et al. (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS biology 9: e1000586. doi: 10.1371/journal.pbio.1000586
[16]  Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, et al. (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436: 1040–1043. doi: 10.1038/nature03870
[17]  Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA (2013) Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome research 23: 1258–1270. doi: 10.1101/gr.153296.112
[18]  Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, et al. (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436: 1044–1047. doi: 10.1038/nature03957
[19]  Ashe A, Belicard T, Le Pen J, Sarkies P, Frezal L, et al. (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. eLife 2: e00994. doi: 10.7554/elife.00994
[20]  Collins CA, Brown EJ (2010) Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends in cell biology 20: 205–213. doi: 10.1016/j.tcb.2010.01.002
[21]  Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, et al. (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell host & microbe 12: 778–790. doi: 10.1016/j.chom.2012.10.019
[22]  Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, et al. (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501: 512–516. doi: 10.1038/nature12566
[23]  Perrin AJ, Jiang X, Birmingham CL, So NS, Brumell JH (2004) Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr Biol 14: 806–811. doi: 10.1016/j.cub.2004.04.033
[24]  Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cellular and molecular life sciences: CMLS 61: 1546–1561. doi: 10.1007/s00018-004-4129-5
[25]  Knodler LA, Celli J (2011) Eating the strangers within: host control of intracellular bacteria via xenophagy. Cellular microbiology 13: 1319–1327. doi: 10.1111/j.1462-5822.2011.01632.x
[26]  Mansilla Pareja ME, Colombo MI (2013) Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in cellular and infection microbiology 3: 54. doi: 10.3389/fcimb.2013.00054
[27]  Birmingham CL, Brumell JH (2006) Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2: 156–158. doi: 10.1016/s0076-6879(08)03620-3
[28]  Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. The Journal of biological chemistry 281: 11374–11383. doi: 10.1074/jbc.m509157200
[29]  Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature immunology 10: 1215–1221. doi: 10.1038/ni.1800
[30]  Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annual review of plant biology 62: 299–334. doi: 10.1146/annurev-arplant-042809-112256
[31]  Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nature reviews Molecular cell biology 14: 369–381. doi: 10.1038/nrm3582
[32]  Thomas JH (2006) Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res 16: 1017–1030. doi: 10.1101/gr.5089806
[33]  Nayak S, Santiago FE, Jin H, Lin D, Schedl T, et al. (2002) The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Current biology: CB 12: 277–287. doi: 10.1016/s0960-9822(02)00682-6
[34]  Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, et al. (2012) Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome research 22: 2478–2488. doi: 10.1101/gr.142802.112
[35]  Engelmann I, Griffon A, Tichit L, Montanana-Sanchis F, Wang G, et al. (2011) A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 6: e19055. doi: 10.1371/journal.pone.0019055
[36]  Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, et al. (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the National Academy of Sciences of the United States of America 101: 10995–11000. doi: 10.1073/pnas.0404073101
[37]  Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, et al. (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS pathogens 6: e1000982. doi: 10.1371/journal.ppat.1000982
[38]  Mongkoldhumrongkul N, Swain SC, Jayasinghe SN, Sturzenbaum S (2010) Bio-electrospraying the nematode Caenorhabditis elegans: studying whole-genome transcriptional responses and key life cycle parameters. Journal of the Royal Society, Interface/the Royal Society 7: 595–601. doi: 10.1098/rsif.2009.0364
[39]  Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283. doi: 10.1038/nature01789
[40]  Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, et al. (2011) Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC research notes 4: 34. doi: 10.1186/1756-0500-4-34
[41]  Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, et al. (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS genetics 2: e183. doi: 10.1371/journal.pgen.0020183.eor
[42]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102: 15545–15550. doi: 10.1073/pnas.0506580102
[43]  Kourtis N, Nikoletopoulou V, Tavernarakis N (2012) Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490: 213–218. doi: 10.1038/nature11417
[44]  Singh V, Aballay A (2006) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proceedings of the National Academy of Sciences of the United States of America 103: 13092–13097. doi: 10.1073/pnas.0604050103
[45]  Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4: 44–57. doi: 10.1038/nprot.2008.211
[46]  Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research 37: 1–13. doi: 10.1093/nar/gkn923
[47]  Boxem M, Tsai CW, Zhang Y, Saito RM, Liu JO (2004) The C. elegans methionine aminopeptidase 2 analog map-2 is required for germ cell proliferation. FEBS letters 576: 245–250. doi: 10.1016/j.febslet.2004.08.077
[48]  Mitchell DH, Stiles JW, Santelli J, Sanadi DR (1979) Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. Journal of gerontology 34: 28–36. doi: 10.1093/geronj/34.1.28
[49]  Bailey L (1953) Effect of fumagillin upon Nosema apis (Zander). Nature 171: 212–213. doi: 10.1038/171212a0
[50]  Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, et al. (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450–453. doi: 10.1038/35106579
[51]  Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, et al. (1997) The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proceedings of the National Academy of Sciences of the United States of America 94: 6099–6103. doi: 10.1073/pnas.94.12.6099
[52]  Williams GR, Sampson MA, Shutler D, Rogers RE (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? Journal of invertebrate pathology 99: 342–344. doi: 10.1016/j.jip.2008.04.005
[53]  Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, et al. (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS genetics 4: e24. doi: 10.1371/journal.pgen.0040024.eor
[54]  Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, et al. (2014) The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Developmental cell 28: 43–55. doi: 10.1016/j.devcel.2013.11.022
[55]  Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.
[56]  Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER (2012) C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell host & microbe 11: 375–386. doi: 10.1016/j.chom.2012.02.008
[57]  McEwan DL, Kirienko NV, Ausubel FM (2012) Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell host & microbe 11: 364–374. doi: 10.1016/j.chom.2012.02.007
[58]  Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149: 452–466. doi: 10.1016/j.cell.2012.02.050
[59]  Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI (2013) Identification of a tissue-selective heat shock response regulatory network. PLoS genetics 9: e1003466. doi: 10.1371/journal.pgen.1003466
[60]  Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, et al. (2011) Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS genetics 7: e1002119. doi: 10.1371/journal.pgen.1002119
[61]  Horvath CM (2004) Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein. European journal of biochemistry/FEBS 271: 4621–4628. doi: 10.1111/j.1432-1033.2004.04425.x
[62]  Komuro A, Bamming D, Horvath CM (2008) Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 43: 350–358. doi: 10.1016/j.cyto.2008.07.011
[63]  Randow F, Lehner PJ (2009) Viral avoidance and exploitation of the ubiquitin system. Nature cell biology 11: 527–534. doi: 10.1038/ncb0509-527
[64]  Rajsbaum R, Garcia-Sastre A (2013) Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways. Trends in microbiology 21: 421–429. doi: 10.1016/j.tim.2013.06.006
[65]  Choi AG, Wong J, Marchant D, Luo H (2013) The ubiquitin-proteasome system in positive-strand RNA virus infection. Reviews in medical virology 23: 85–96. doi: 10.1002/rmv.1725
[66]  Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature reviews Immunology 10: 47–58. doi: 10.1038/nri2689
[67]  Couillault C, Pujol N, Reboul J, Sabatier L, Guichou JF, et al. (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature immunology 5: 488–494. doi: 10.1038/ni1060
[68]  O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome research 16: 1005–1016. doi: 10.1101/gr.50823006
[69]  Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M, et al. (2006) A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103: 14086–14091. doi: 10.1073/pnas.0603424103
[70]  Kleino A, Silverman N (2012) UnZIPping mechanisms of effector-triggered immunity in animals. Cell host & microbe 11: 320–322. doi: 10.1016/j.chom.2012.04.002
[71]  Liu Y, Samuel BS, Breen PC, Ruvkun G (2014) Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508: 406–410. doi: 10.1038/nature13204
[72]  Stuart LM, Paquette N, Boyer L (2013) Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nature reviews Immunology 13: 199–206. doi: 10.1038/nri3398
[73]  Lemaitre B, Girardin SE (2013) Translation inhibition and metabolic stress pathways in the host response to bacterial pathogens. Nature reviews Microbiology 11: 365–369. doi: 10.1038/nrmicro3029
[74]  Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nature reviews Molecular cell biology 14: 237–248. doi: 10.1038/nrm3542
[75]  Aballay A (2013) Role of the nervous system in the control of proteostasis during innate immune activation: insights from C. elegans. PLoS pathogens 9: e1003433. doi: 10.1371/journal.ppat.1003433
[76]  Taylor RC, Berendzen KM, Dillin A (2014) Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nature reviews Molecular cell biology 15: 211–217. doi: 10.1038/nrm3752
[77]  Alto NM, Orth K (2012) Subversion of cell signaling by pathogens. Cold Spring Harbor perspectives in biology 4: a006114. doi: 10.1101/cshperspect.a006114
[78]  Steele-Mortimer O (2011) Exploitation of the ubiquitin system by invading bacteria. Traffic 12: 162–169. doi: 10.1111/j.1600-0854.2010.01137.x
[79]  Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124: 471–484. doi: 10.1016/j.cell.2006.01.016
[80]  Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, et al. (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. Journal of immunology 183: 5909–5916. doi: 10.4049/jimmunol.0900441
[81]  Anderson DM, Frank DW (2012) Five mechanisms of manipulation by bacterial effectors: a ubiquitous theme. PLoS pathogens 8: e1002823. doi: 10.1371/journal.ppat.1002823
[82]  Veiga E, Cossart P (2005) Ubiquitination of intracellular bacteria: a new bacteria-sensing system? Trends in cell biology 15: 2–5. doi: 10.1016/j.tcb.2004.11.005
[83]  Pilar AV, Reid-Yu SA, Cooper CA, Mulder DT, Coombes BK (2012) GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS pathogens 8: e1002773. doi: 10.1371/journal.ppat.1002773
[84]  Ardila-Garcia AM, Fast NM (2012) Microsporidian infection in a free-living marine nematode. Eukaryotic cell 11: 1544–1551. doi: 10.1128/ec.00228-12
[85]  Felix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC biology 10: 59. doi: 10.1186/1741-7007-10-59
[86]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[87]  Estes KA, Szumowski SC, Troemel ER (2011) Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells. PLoS pathogens 7: e1002227. doi: 10.1371/journal.ppat.1002227
[88]  Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, et al. (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301: 1387–1391. doi: 10.1126/science.1087782
[89]  Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & development 21: 2161–2171. doi: 10.1101/gad.1573107
[90]  Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, et al. (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic acids research 37: e123. doi: 10.1093/nar/gkp596
[91]  Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, et al. (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature methods 7: 709–715. doi: 10.1038/nmeth.1491
[92]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 10: R25. doi: 10.1186/gb-2009-10-3-r25
[93]  Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12: 323. doi: 10.1186/1471-2105-12-323
[94]  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616
[95]  Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 100: 9440–9445. doi: 10.1073/pnas.1530509100
[96]  Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, et al. (2012) Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq. Nucleic acids research 40: 6304–6318. doi: 10.1093/nar/gks282
[97]  Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, et al. (2009) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC genomics 10: 213. doi: 10.1186/1471-2164-10-213
[98]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research 29: e45. doi: 10.1093/nar/29.9.e45
[99]  GuhaThakurta D, Palomar L, Stormo GD, Tedesco P, Johnson TE, et al. (2002) Identification of a novel cis-regulatory element involved in the heat shock response in Caenorhabditis elegans using microarray gene expression and computational methods. Genome research 12: 701–712. doi: 10.1101/gr.228902

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133