全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis

DOI: doi/10.1371/journal.ppat.1004232

Full-Text   Cite this paper   Add to My Lib

Abstract:

A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.

References

[1]  Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329. doi: 10.1038/nature05286
[2]  Sarkar SF, Gordon JS, Martin GB, Guttman DS (2006) Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174: 1041–1056. doi: 10.1534/genetics.106.060996
[3]  Agrios GN (2005) Plant Pathology. San Diego: Academic Press.
[4]  Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7: 601–611. doi: 10.1038/nrm1984
[5]  Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr Opin Microbiol 14: 39–46. doi: 10.1016/j.mib.2010.12.011
[6]  Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, et al. (2007) A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17: 499–508. doi: 10.1016/j.cub.2007.02.028
[7]  Xiang T, Zong N, Zou Y, Wu Y, Zhang J, et al. (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18: 74–80. doi: 10.1016/j.cub.2007.12.020
[8]  Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20: 199–208. doi: 10.1016/j.tim.2012.01.003
[9]  Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, et al. (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8: e1002523. doi: 10.1371/journal.ppat.1002523
[10]  Shimada C, Lipka V, O'Connell R, Okuno T, Schulze-Lefert P, et al. (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact 19: 270–279. doi: 10.1094/mpmi-19-0270
[11]  Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, et al. (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144: 1132–1143. doi: 10.1104/pp.107.098897
[12]  Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, et al. (2013) The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog 9: e1003290. doi: 10.1371/journal.ppat.1003290
[13]  Henty-Ridilla JL, Li J, Day B, Staiger CJ (2014) ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26: 340–352. doi: 10.1105/tpc.113.122499
[14]  Kim H, Park M, Kim SJ, Hwang I (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell 17: 888–902. doi: 10.1105/tpc.104.028829
[15]  Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449: 827–834. doi: 10.1038/nature06247
[16]  Franco IS, Shuman HA (2012) A pathogen's journey in the host cell: Bridges between actin and traffic. BioArchitecture 2: 38–42. doi: 10.4161/bioa.20422
[17]  Carabeo R (2011) Bacterial subversion of host actin dynamics at the plasma membrane. Cell Microbiol 13: 1460–1469. doi: 10.1111/j.1462-5822.2011.01651.x
[18]  Dunn JD, Valdivia RH (2010) Uncivil engineers: Chlamydia, Salmonella and Shigella alter cytoskeleton architecture to invade epithelial cells. Future Microbiol 5: 1210–1232. doi: 10.2217/fmb.10.77
[19]  Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant-Microbe Interact 22: 1069–1080. doi: 10.1094/mpmi-22-9-1069
[20]  Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, et al. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295: 1722–1726. doi: 10.1126/science.295.5560.1722
[21]  Lee MW, Jelenska J, Greenberg JT (2008) Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J 54: 452–465. doi: 10.1111/j.1365-313x.2008.03439.x
[22]  Greenberg JT, Vinatzer BA (2003) Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr Opin Microbiol 6: 20–28. doi: 10.1016/s1369-5274(02)00004-8
[23]  Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, et al. (2009) Actin bundling in plants. Cell Motil Cytoskeleton 66: 940–957. doi: 10.1002/cm.20389
[24]  Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, et al. (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5: 605–607. doi: 10.1038/nmeth.1220
[25]  Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61: 156–165. doi: 10.1111/j.1365-313x.2009.04032.x
[26]  Smertenko AP, Deeks MJ, Hussey PJ (2010) Strategies of actin reorganisation in plant cells. J Cell Sci 123: 3019–3028. doi: 10.1242/jcs.071126
[27]  Senetar MA, Foster SJ, McCann RO (2004) Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochem 43: 15418–15428. doi: 10.1021/bi0487239
[28]  Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, et al. (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol 150: 815–824. doi: 10.1104/pp.109.137604
[29]  Porter K, Shimono M, Tian M, Day B (2012) Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog 8: e1003006. doi: 10.1371/journal.ppat.1003006
[30]  Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, et al. (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135: 1150–1161. doi: 10.1104/pp.104.040683
[31]  Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128: 779–792. doi: 10.1083/jcb.128.5.779
[32]  Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767. doi: 10.1038/nature02485
[33]  Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20: 537–542. doi: 10.1101/gad.366506
[34]  Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, et al. (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497–500. doi: 10.1038/nature05999
[35]  Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, et al. (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J 68: 413–423. doi: 10.1111/j.1365-313x.2011.04696.x
[36]  Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, et al. (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A 106: 15973–15978. doi: 10.1073/pnas.0905532106
[37]  Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308: 1036–1040. doi: 10.1126/science.1108791
[38]  Hatsugai N, Hara-Nishimura I (2010) Two vacuole-mediated defense strategies in plants. Plant Signal Behav 5: 1568–1570. doi: 10.4161/psb.5.12.13319
[39]  Stevens JM, Galyov EE, Stevens MP (2006) Actin-dependent movement of bacterial pathogens. Nat Rev Microbiol 4: 91–101. doi: 10.1038/nrmicro1320
[40]  Shao F (2008) Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 11: 21–29. doi: 10.1016/j.mib.2008.01.005
[41]  Franklin-Tong VE, Gourlay CW (2008) A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem J 413: 389–404. doi: 10.1042/bj20080320
[42]  Büttner D, Bonas U (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6: 312–319. doi: 10.1016/s1369-5266(03)00064-5
[43]  Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16: 964–975. doi: 10.1091/mbc.e04-09-0774
[44]  Kandasamy MK, McKinney EC, Roy E, Meagher RB (2012) Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists. The Plant cell 24: 2041–2057. doi: 10.1105/tpc.111.095281
[45]  Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, et al. (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168: 529–540. doi: 10.1111/j.1469-8137.2005.01582.x
[46]  Deeks MJ, Calcutt JR, Ingle EK, Hawkins TJ, Chapman S, et al. (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22: 1595–1600. doi: 10.1016/j.cub.2012.06.041
[47]  Jelenska J, Hal JAv, Greenberg JT (2010) Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 107: 13177–13182. doi: 10.1073/pnas.0910943107
[48]  Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, et al. (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13: 1511–1526. doi: 10.2307/3871383
[49]  Lee KH, Kim DH, Lee SW, Kim ZH, Hwang I (2002) In vivo import experiments in protoplasts reveal the importance of the overall context but not specific amino acid residues of the transit peptide during import into chloroplasts. Mol Cells 14: 388–397.
[50]  Blanchoin L, Pollard TD, Mullins RD (2000) Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol 10: 1273–1282. doi: 10.1016/s0960-9822(00)00749-1
[51]  Kovar DR, Kuhn JR, Tichy AL, Pollard TD (2003) The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J Cell Biol 161: 875–887. doi: 10.1083/jcb.200211078
[52]  Lu H, Salimian S, Gamelin E, Wang G, Fedorowski J, et al. (2009) Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. Plant J 58: 401–412. doi: 10.1111/j.1365-313x.2009.03791.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133