Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi
Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013–0.13 μM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 μM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 μM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.
References
[1]
World Health Organization (2012) World malaria report 2012. World Health Organization.
[2]
Enayati A, Hemingway J (2010) Malaria management: past, present, and future. Ann Rev Entomol 55: 569–591. doi: 10.1146/annurev-ento-112408-085423
[3]
Whitten MM, Shiao SH, Levashina EA (2006) Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 28: 121–130. doi: 10.1111/j.1365-3024.2006.00804.x
[4]
Clayton AM, Dong Y, Dimopoulos G (2013) The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 6: 169–81 DOI: 10.1159/000353602.
[5]
Baton LA, Ranford-Cartwright LC (2012) Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection. Intl J Parasitol 42: 249–258. doi: 10.1016/j.ijpara.2011.12.005
[6]
Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A 95: 5700–5705. doi: 10.1073/pnas.95.10.5700
[7]
Peterson TM, Gow AJ, Luckhart S (2007) Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Rad Biol Med 42: 132–142. doi: 10.1016/j.freeradbiomed.2006.10.037
[8]
Surachetpong W, Singh N, Cheung KW, Luckhart S (2009) MAPK ERK signaling regulates the TGF-β1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 5: e1000366. doi: 10.1371/journal.ppat.1000366
[9]
Pakpour N, Camp L, Smithers HM, Wang B, Tu Z, et al. (2013) Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes. PLoS One 8: e76535. doi: 10.1371/journal.pone.0076535
[10]
Lim J, Gowda DC, Krishnegowda G, Luckhart S (2005) Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect Immun 73: 2778–2789. doi: 10.1128/iai.73.5.2778-2789.2005
[11]
Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S (2013) The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 15: 243–254. doi: 10.1016/j.micinf.2013.01.003
[12]
Kang MA, Mott TM, Tapley EC, Lewis EE, Luckhart S (2008) Insulin regulates aging and oxidative stress in Anopheles stephensi. J Exp Biol 211: 741–748. doi: 10.1242/jeb.012955
[13]
Surachetpong W, Pakpour N, Cheung KW, Luckhart S (2011) Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal 14: 943–955. doi: 10.1089/ars.2010.3401
[14]
Pakpour N, Corby-Harris V, Green GP, Smithers HM, Cheung KW, et al. (2012) Ingested human insulin inhibits the mosquito NF-κB-dependent immune response to Plasmodium falciparum. Infect Immun 80: 2141–2149. doi: 10.1128/iai.00024-12
[15]
White NJ, Warrell DA, Chanthavanich P, Looareesuwan S, Warrell MJ, et al. (1983) Severe hypoglycemia and hyperinsulinemia in falciparum malaria. NE J Med 309: 61–66. doi: 10.1056/nejm198307143090201
[16]
Planche T, Dzeing A, Ngou-Milama E, Kombila M, Stacpoole PW (2005) Metabolic complications of severe malaria. In Malaria: Drugs, Disease and Post-genomic Biology Berlin Heidelberg: Springer. pp. 105–136.
[17]
Drexler A, Nuss A, Hauck E, Glennon E, Cheung K, et al. (2013) Human IGF1 extends lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. J Exp Biol 216: 208–217. doi: 10.1242/jeb.078873
[18]
Mizushima Y, Kato H, Ohmae H, Tanaka T, Bobogare A, et al. (1994) Prevalence of malaria and its relationship to anemia, blood glucose levels, and serum somatomedin c (IGF-1) levels in the Solomon Islands. Acta Trop 58: 207–220. doi: 10.1016/0001-706x(94)90015-9
[19]
L?fqvist C, Andersson E, Gelander L, Rosberg S, Blum WF, et al. (2001) Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab 86: 5870–5876. doi: 10.1210/jcem.86.12.8117
[20]
Renehan AG, Jones J, O'Dwyer ST, Shalet SM (2003) Determination of IGF-I, IGF-II, IGFBP-2, and IGFBP-3 levels in serum and plasma: comparisons using the Bland–Altman method. Growth Horm IGF Res 13: 341–346. doi: 10.1016/s1096-6374(03)00112-6
[21]
Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98: 9666–9670. doi: 10.1073/pnas.171301998
[22]
Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8: 152. doi: 10.1186/1741-7007-8-152
[23]
Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24: 604–612. doi: 10.1016/j.tig.2008.10.002
[24]
Tóth ML, Sigmond T, Borsos é, Barna J, Erdélyi P, et al. (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4: 330–338.
[25]
Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, et al. (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106: 14564–14569. doi: 10.1073/pnas.0813319106
[26]
Rera M, Azizi MJ, Walker DW (2013) Organ-specific mediation of lifespan extension: More than a gut feeling? Ageing Res Rev 12: 436–444. doi: 10.1016/j.arr.2012.05.003
[27]
Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem Cell division in Drosophila. Cell Stem Cell 4: 49–61. doi: 10.1016/j.stem.2008.10.016
[28]
Libert S, Chao Y, Zwiener J, Pletcher SD (2008) Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Mol Immunol 45: 810–817. doi: 10.1016/j.molimm.2007.06.353
[29]
Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, et al. (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463: 369–373. doi: 10.1038/nature08698
[30]
Biteau B, Karpac J, Supoyo S, DeGennaro M, Lehmann R, et al. (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6: e1001159. doi: 10.1371/journal.pgen.1001159
[31]
Luckhart S, Giulivi C, Drexler AL, Antonova-Koch Y, Sakaguchi D, et al. (2013) Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 9: e1003180. doi: 10.1371/journal.ppat.1003180
[32]
Hauck ES, Antonova-Koch Y, Drexler A, Pietri J, Pakpour N, et al. (2013) Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 15: 775–787. doi: 10.1016/j.micinf.2013.05.006
[33]
Lin Y, Yang Q, Wang X, Liu ZG (2006) The essential role of the death domain kinase receptor-interacting protein in insulin growth factor-I-induced c-Jun N-terminal kinase activation. J Biol Chem 281: 23525–23532. doi: 10.1074/jbc.m601487200
[34]
Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30: 151–159. doi: 10.1016/j.tibs.2005.01.003
[35]
Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, et al. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1: 503–514. doi: 10.1016/s1534-5807(01)00059-4
[36]
Ligoxygakis P (2013) Genetics of immune recognition and response in Drosophila host defense. Adv Genet 83: 71–97. doi: 10.1016/b978-0-12-407675-4.00002-x
[37]
Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J, et al. (2012) Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog 8: e1002737. doi: 10.1371/journal.ppat.1002737
[38]
Garver LS, de Almeida Oliveira G, Barillas-Mury C (2013) The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity. PLoS Pathog 9: e1003622. doi: 10.1371/journal.ppat.1003622
[39]
Akman-Anderson L, Olivier M, Luckhart S (2007) Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. Infect Immun 75: 4012–4019. doi: 10.1128/iai.00645-07
[40]
Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, et al. (2006) Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25: 3068–3077. doi: 10.1038/sj.emboj.7601182
[41]
Park JM, Brady H, Ruocco MG, Sun H, Williams D, et al. (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18: 584–594. doi: 10.1101/gad.1168104
[42]
Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, et al. (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278: 48928–48934. doi: 10.1074/jbc.m304802200
[43]
Oliveira Gde A, Lieberman J, Barillas-Mury C (2012) Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335: 856–859. doi: 10.1126/science.1209678
[44]
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JC, et al. (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18: 2029–2074. doi: 10.1089/ars.2012.4729
[45]
Kuznetsov AV, Kehrer I, Kozlov AV, Haller M, Redl H, et al. (2011) Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400: 2383–2390. doi: 10.1007/s00216-011-4764-2
[46]
Troncoso R, Vicencio JM, Parra V, Nemchenko A, Kawashima Y, et al. (2012) Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res 93: 320–329. doi: 10.1093/cvr/cvr321
[47]
Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A 95: 5700–5705. doi: 10.1073/pnas.95.10.5700
[48]
Günther C, Neumann H, Neurath MF, Becker C (2013) Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 62: 1062–1071. doi: 10.1136/gutjnl-2011-301364
[49]
Abreu MT, Palladino AA, Arnold ET, Kwon RS, McRoberts JA (2000) Modulation of barrier function during Fas-mediated apoptosis in human intestinal epitelial cells. Gastroenterology 119: 1524–1536. doi: 10.1053/gast.2000.20232
[50]
Chin AC, Teoh DA, Scott KG, Meddings JB, Macnaughton WK, et al. (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70: 3673–3680. doi: 10.1128/iai.70.7.3673-3680.2002
[51]
Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5: 327–331. doi: 10.1002/emmm.201201999
[52]
Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21: 513–520. doi: 10.1089/scd.2011.0526
[53]
Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, et al. (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9: 908–916. doi: 10.1038/ni.1634
[54]
Randow F, Münz C (2012) Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 33: 475–487. doi: 10.1016/j.it.2012.06.003
[55]
Benjamin JL, Sumpter R Jr, Levine B, Hooper LV (2013) Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13: 723–734. doi: 10.1016/j.chom.2013.05.004
[56]
Randall-Demllo S, Chieppa M, Eri R (2013) Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 4: 301. doi: 10.3389/fimmu.2013.00301
[57]
Micchelli CA, Perrimon N (2005) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439: 475–479. doi: 10.1038/nature04371
[58]
Ohlstein B, Spradling A (2005) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439: 470–474. doi: 10.1038/nature04333
[59]
Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast Saccharomyces cerevisiae. FEBS Lett 581: 2156–2161. doi: 10.1016/j.febslet.2007.01.096
[60]
Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, et al. (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102: 4494–4499. doi: 10.1073/pnas.0500749102
[61]
Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125. doi: 10.1016/j.cell.2005.02.030
[62]
Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3: 442–455. doi: 10.1016/j.stem.2008.07.024
[63]
Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699–712. doi: 10.1016/j.cell.2013.09.021
[64]
Wen Z, Gulia M, Clark KD, Dhara A, Crim JW, et al. (2010) Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities. Molec Cell Endocrinol 328: 47–55. doi: 10.1016/j.mce.2010.07.003
[65]
Rasband WS, ImageJ (1997) U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2012.