全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission

DOI: doi/10.1371/journal.ppat.1004230

Full-Text   Cite this paper   Add to My Lib

Abstract:

The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-na?ve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our understanding of this important viral pathogen of honeybees.

References

[1]  Sorrell I, White A, Pedersen AB, Hails RS, Boots M (2009) The evolution of covert, silent infection as a parasite strategy. Proceedings of the Royal Society B-Biological Sciences 276: 2217–2226. doi: 10.1098/rspb.2008.1915
[2]  Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proceedings of the Royal Society B-Biological Sciences 276: 1369–1378. doi: 10.1098/rspb.2008.1709
[3]  Weiss RA (2002) Virulence and pathogenesis. Trends in Microbiology 10: 314–317. doi: 10.1016/s0966-842x(02)02391-0
[4]  Boots M, Greenman J, Ross D, Norman R, Hails R, et al. (2003) The population dynamical implications of covert infections in host-microparasite interactions. Journal of Animal Ecology 72: 1064–1072. doi: 10.1046/j.1365-2656.2003.00777.x
[5]  Rigaud T, Perrot-Minnot M-J, Brown MJF (2010) Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proceedings of the Royal Society B-Biological Sciences 277: 3693–3702. doi: 10.1098/rspb.2010.1163
[6]  Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292: 1109–1112. doi: 10.1126/science.1059026
[7]  Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, et al. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B-Biological Sciences 274: 303–313. doi: 10.1098/rspb.2006.3721
[8]  Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology 38: 1082–1093. doi: 10.1046/j.1365-2664.2001.00662.x
[9]  Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Veterinary Research 41: 54 doi 10.1051vetres2010027/vetres/2010027.
[10]  Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012) Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees. Applied and Environmental Microbiology 78: 981–987. doi: 10.1128/aem.06537-11
[11]  Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJF, et al. (2013) Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment 11: 251–259. doi: 10.1890/120126
[12]  Lanzi G, De Miranda JR, Boniotti MB, Cameron CE, Lavazza A, et al. (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). Journal of Virology 80: 4998–5009. doi: 10.1128/jvi.80.10.4998-5009.2006
[13]  de Miranda JR, Genersch E (2010) Deformed wing virus. Journal of Invertebrate Pathology 103: S48–S61. doi: 10.1016/j.jip.2009.06.012
[14]  Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, et al. (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. Journal of General Virology 85: 3747–3755. doi: 10.1099/vir.0.80470-0
[15]  Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, et al. (2011) Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. The Journal of general virology 92: 156–161. doi: 10.1099/vir.0.025965-0
[16]  Zioni N, Soroker V, Chejanovsky N (2011) Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 417: 106–112. doi: 10.1016/j.virol.2011.05.009
[17]  Fujiyuki T, Takeuchi H, Ono M, Ohka S, Sasaki T, et al. (2004) Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. Journal of Virology 78: 1093–1100. doi: 10.1128/jvi.78.3.1093-1100.2004
[18]  Yang XL, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America 102: 7470–7475. doi: 10.1073/pnas.0501860102
[19]  Gregory PG, Evans JD, Rinderer T, de Guzman L (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science 5: 7. doi: 10.3410/f.1031608.368968
[20]  Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, et al. (2012) Global Honey Bee Viral Landscape Altered by a Parasitic Mite. Science 336: 1304–1306. doi: 10.1126/science.1220941
[21]  Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE, et al. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. Bmc Genomics 9: 301 doi: 10.1186/1471-2164-9-301.
[22]  Johnson RM, Evans JD, Robinson GE, Berenbaum MR (2009) Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America 106: 14790–14795. doi: 10.1073/pnas.0906970106
[23]  Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, et al. (2012) Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies. Plos Pathogens 8: e1002735 doi: 10.1371/journal.ppat.1002735.
[24]  Merkling SH, van Rij RP (2013) Beyond RNAi: Antiviral defense strategies in Drosophila and mosquito. Journal of Insect Physiology 59: 159–170. doi: 10.1016/j.jinsphys.2012.07.004
[25]  Kemp C, Imler J-L (2009) Antiviral immunity in drosophila. Current Opinion in Immunology 21: 3–9. doi: 10.1016/j.coi.2009.01.007
[26]  Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, et al. (2013) RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nature Immunology 14: 396–403. doi: 10.1038/ni.2542
[27]  Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103: S96–S119. doi: 10.1016/j.jip.2009.07.016
[28]  Tentcheva D, Gauthier L, Jouve S, Canabady-Rochelle L, Dainat B, et al. (2004) Polymerase Chain Reaction detection of deformed wing virus (DWV) in Apis mellifera and Varroa destructor. Apidologie 35: 431–439. doi: 10.1051/apido:2004021
[29]  Martin SJ, Ball BV, Carreck NL (2013) The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK. Journal of Apicultural Research 52: 251–258 doi 10.3896ibra.1.52.5.12/ibra.1.52.5.12.
[30]  Vinciotti V, Khanin R, D'Alimonte D, Liu X, Cattini N, et al. (2005) An experimental evaluation of a loop versus a reference design for two-channel microarrays. Bioinformatics 21: 492–501. doi: 10.1093/bioinformatics/bti022
[31]  Bailey RA (2007) Designs for two-colour microarray experiments. Journal of the Royal Statistical Society Series C-Applied Statistics 56: 365–394. doi: 10.1111/j.1467-9876.2007.00582.x
[32]  Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, et al. (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931–949. doi: 10.1038/nature05400
[33]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25: 25–29. doi: 10.1038/75556
[34]  Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, et al. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology 15: 645–656. doi: 10.1111/j.1365-2583.2006.00682.x
[35]  Zou Z, Lopez DL, Kanost MR, Evans JD, Jiang H (2006) Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology 15: 603–614. doi: 10.1111/j.1365-2583.2006.00684.x
[36]  Chen X, Yu X, Cai Y, Zheng H, Yu D, et al. (2010) Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera. Insect Molecular Biology 19: 799–805. doi: 10.1111/j.1365-2583.2010.01039.x
[37]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25 doi: 10.1186/gb-2009-10-3-r25.
[38]  Yue C, Genersch E (2005) RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). Journal of General Virology 86: 3419–3424. doi: 10.1099/vir.0.81401-0
[39]  Moeckel N, Gisder S, Genersch E (2011) Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. Journal of General Virology 92: 370–377. doi: 10.1099/vir.0.025940-0
[40]  Wood GR, Ryabov E, Fannon J, Moore JD, Evans DJ, et al. (2014) MosaicSolver: a tool for determining recombinants of viral genomes from pileup data. Nucleic Acid Research 42 (in press).
[41]  Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10: 57–63. doi: 10.1038/nrg2484
[42]  Akhter S, Bailey BA, Salamon P, Aziz RK, Edwards RA (2013) Applying Shannon's information theory to bacterial and phage genomes and metagenomes. Scientific Reports 3: 7. doi: 10.1038/srep01033
[43]  Quail MA, Smith M, Coupland P, Otto TD, Harris SR, et al. (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. Bmc Genomics 13: 341 doi:10.1186/1471-2164-13-341.
[44]  vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: S80–S95. doi: 10.1016/j.jip.2009.06.011
[45]  Furst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506: 364–366. doi: 10.1038/nature12977
[46]  Highfield AC, El Nagar A, Mackinder LCM, Noel L, Hall MJ, et al. (2009) Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Applied and Environmental Microbiology 75: 7212–7220. doi: 10.1128/aem.02227-09
[47]  Koudritsky M, Domany E (2008) Positional distribution of human transcription factor binding sites. Nucleic Acids Research 36: 6795–6805. doi: 10.1093/nar/gkn752
[48]  Doukas T, Sarnow P (2011) Escape from Transcriptional Shutoff during Poliovirus Infection: NF-kappa B-Responsive Genes I kappa Ba and A20. Journal of Virology 85: 10101–10108. doi: 10.1128/jvi.00575-11
[49]  Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, et al. (2012) Picornavirus Modification of a Host mRNA Decay Protein. Mbio 3: e00431–12 doi: 10.1128/mBio.00431-12.
[50]  Grinde B, Gayorfar M, Hoddevik G (2007) Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon. Virology Journal 4: 24 doi: 10.1186/1743-422X-4-24.
[51]  Valanne S, Wang J-H, Ramet M (2011) The Drosophila Toll Signaling Pathway. Journal of Immunology 186: 649–656. doi: 10.4049/jimmunol.1002302
[52]  Deddouche S, Matt N, Budd A, Mueller S, Kemp C, et al. (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nature Immunology 9: 1425–1432. doi: 10.1038/ni.1664
[53]  Paradkar PN, Trinidad L, Voysey R, Duchemin J-B, Walker PJ (2012) Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proceedings of the National Academy of Sciences of the United States of America 109: 18915–18920. doi: 10.1073/pnas.1205231109
[54]  Zambon RA, Nandakumar M, Vakharia VN, Wu LP (2005) The Toll pathway is important for an antiviral response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 102: 7257–7262. doi: 10.1073/pnas.0409181102
[55]  Basset A, Khush RS, Braun A, Gardan L, Boccard F, et al. (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proceedings of the National Academy of Sciences of the United States of America 97: 3376–3381. doi: 10.1073/pnas.97.7.3376
[56]  Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nature Reviews Immunology 5: 136–148. doi: 10.1038/nri1548
[57]  Minakhina S, Tan W, Steward R (2011) JAK/STAT and the GATA factor Pannier control hemocyte maturation and differentiation in Drosophila. Developmental Biology 352: 308–316. doi: 10.1016/j.ydbio.2011.01.035
[58]  Lebestky T, Jung SH, Banerjee U (2003) A serrate-expressing signaling center controls Drosophila hematopoiesis. Genes & Development 17: 348–353. doi: 10.1101/gad.1052803
[59]  Richards EH, Jones B, Bowman A (2011) Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology 138: 602–608. doi: 10.1017/s0031182011000072
[60]  Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32: 1295–1309. doi: 10.1016/s0965-1748(02)00092-9
[61]  Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM (2005) Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cellular Microbiology 7: 39–51. doi: 10.1111/j.1462-5822.2004.00430.x
[62]  Hillyer JF (2009) Transcription in mosquito hemocytes in response to pathogen exposure. Journal of Biology 8: 51. doi: 10.1186/jbiol151
[63]  Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. Journal of Immunology 178: 4711–4716. doi: 10.4049/jimmunol.178.8.4711
[64]  Meister M, Lagueux M (2003) Drosophila blood cells. Cellular Microbiology 5: 573–580. doi: 10.1046/j.1462-5822.2003.00302.x
[65]  McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283–302. doi: 10.1016/0092-8674(92)90471-n
[66]  Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America 105: 19938–19943. doi: 10.1073/pnas.0803408105
[67]  Wang H, Xie J, Shreeve TG, Ma J, Pallett DW, et al. (2013) Sequence Recombination and Conservation of Varroa destructor Virus-1 and Deformed Wing Virus in Field Collected Honey Bees (Apis mellifera). Plos One 8: e74508 doi: 10.1371/journal.pone.0074508.
[68]  Chejanovsky N, Ophir R, Schwager MS, Slabezki Y, Grossman S, et al. (2014) Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology 254–255: 176–183. doi: 10.1016/j.virol.2014.02.012
[69]  Desai SD, Eu YJ, Whyard S, Currie RW (2012) Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Molecular Biology 21: 446–455. doi: 10.1111/j.1365-2583.2012.01150.x
[70]  Brackney DE, Beane JE, Ebel GD (2009) RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification. Plos Pathogens 5: e1000502 doi: 10.1371/journal.ppat.1000502.
[71]  Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, et al. (2010) Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nature Structural & Molecular Biology 17: 547–U541. doi: 10.1038/nsmb.1810
[72]  Amdam GV, Simoes ZLP, Guidugli KR, Norberg K, Omholt SW (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. Bmc Biotechnology 3: 1 doi: 10.1186/1472-6750-3-1.
[73]  Wolschin F, Mutti NS, Amdam GV (2011) Insulin receptor substrate influences female caste development in honeybees. Biology Letters 7: 112–115. doi: 10.1098/rsbl.2010.0463
[74]  Whinston M (1987) The biology of the honeybee. Boston, MA: Harvard University Press.
[75]  Bull JC, Ryabov EV, Prince G, Mead A, Zhang C, et al. (2012) A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS pathogens 8: e1003083. doi: 10.1371/journal.ppat.1003083
[76]  Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, et al. (2013) ArrayExpress update-trends in database growth and links to data analysis tools. Nucleic Acids Research 41: D987–D990. doi: 10.1093/nar/gks1174
[77]  Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer 397–420 p.
[78]  Kendziorski CM, Newton MA, Lan H, Gould MN (2003) On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22: 3899–3914. doi: 10.1002/sim.1548
[79]  Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW (2001) On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8: 37–52. doi: 10.1089/106652701300099074
[80]  Rossell D (2009) GAGA: A parsimonious and flexible model for differential expression analysis. Annals of Applied Statistics 3: 1035–1051. doi: 10.1214/09-aoas244
[81]  Conesa A, Gotz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. International journal of plant genomics 2008: 619832–619832. doi: 10.1155/2008/619832
[82]  Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21: 3448–3449. doi: 10.1093/bioinformatics/bti551
[83]  Team RDC (2011) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[84]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. doi: 10.1093/nar/25.24.4876
[85]  Felsenstein J (1989) PHYLIP – Phylogeny inference package (version 3.2). Cladistics 5: 164–166.
[86]  Leinonen R, Sugawara H, Shumway M (2011) Int Nucleotide Sequence Database C (2011) The Sequence Read Archive. Nucleic Acids Research 39: D19–D21. doi: 10.1093/nar/gkq1019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133