[1] | Allen RD, Naitoh Y (2002) Osmoregulation and contractile vacuoles of protozoa. Int Rev Cytol 215: 351–394. doi: 10.1016/s0074-7696(02)15015-7
|
[2] | Docampo R, Jimenez V, Lander N, Li ZH, Niyogi S (2013) New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int Rev Cell Mol Biol 305: 69–113. doi: 10.1016/b978-0-12-407695-2.00002-0
|
[3] | Montalvetti A, Rohloff P, Docampo R (2004) A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279: 38673–38682. doi: 10.1074/jbc.m406304200
|
[4] | Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279: 52270–52281. doi: 10.1074/jbc.m410372200
|
[5] | Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, et al. (2007) Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 65: 1006–1017. doi: 10.1111/j.1365-2958.2007.05845.x
|
[6] | Nishihara E, Yokota E, Tazaki A, Orii H, Katsuhara M, et al. (2008) Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 100: 179–188. doi: 10.1042/bc20070091
|
[7] | Komsic-Buchmann K, Stephan LM, Becker B (2012) The SEC6 protein is required for contractile vacuole function in Chlamydomonas reinhardtii. J Cell Sci 125: 2885–2895. doi: 10.1242/jcs.099184
|
[8] | Clark TB (1959) Comparative morphology of four genera of trypanosomatidae. J Protozool 6: 227–232. doi: 10.1111/j.1550-7408.1959.tb04362.x
|
[9] | Girard-Dias W, Alcantara CL, Cunha ESN, de Souza W, Miranda K (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol 138: 821–831. doi: 10.1007/s00418-012-1002-8
|
[10] | Li ZH, Alvarez VE, De Gaudenzi JG, Sant'Anna C, Frasch AC, et al. (2011) Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 286: 43959–43971. doi: 10.1074/jbc.m111.311530
|
[11] | Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20: 277–286. doi: 10.1016/j.tcb.2010.02.003
|
[12] | Moniakis J, Coukell MB, Janiec A (1999) Involvement of the Ca2+-ATPase PAT1 and the contractile vacuole in calcium regulation in Dictyostelium discoideum. J Cell Sci 112: 405–414.
|
[13] | Malchow D, Lusche DF, Schlatterer C, De Lozanne A, Muller-Taubenberger A (2006) The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC Dev Biol 6: 31. doi: 10.1186/1471-213x-6-31
|
[14] | Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H (2006) An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119: 3705–3717. doi: 10.1242/jcs.03075
|
[15] | Ludlow MJ, Durai L, Ennion SJ (2009) Functional characterization of intracellular Dictyostelium discoideum P2X receptors. J Biol Chem 284: 35227–35239. doi: 10.1074/jbc.m109.045674
|
[16] | Sivaramakrishnan V, Fountain SJ (2012) A mechanism of intracellular P2X receptor activation. J Biol Chem 287: 28315–28326. doi: 10.1074/jbc.m112.372565
|
[17] | Heuser J, Zhu Q, Clarke M (1993) Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J Cell Biol 121: 1311–1327. doi: 10.1083/jcb.121.6.1311
|
[18] | Sesaki H, Wong EF, Siu CH (1997) The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 138: 939–951. doi: 10.1083/jcb.138.4.939
|
[19] | Heuser J (2006) Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae–a tribute to Gunther Gerisch. Eur J Cell Biol 85: 859–871. doi: 10.1016/j.ejcb.2006.05.011
|
[20] | Sriskanthadevan S, Lee T, Lin Z, Yang D, Siu CH (2009) Cell adhesion molecule DdCAD-1 is imported into contractile vacuoles by membrane invagination in a Ca2+- and conformation-dependent manner. J Biol Chem 284: 36377–36386. doi: 10.1074/jbc.m109.057257
|
[21] | Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76: 78–91. doi: 10.1111/j.1365-2958.2010.07081.x
|
[22] | Macro L, Jaiswal JK, Simon SM (2012) Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J Cell Sci 125: 5721–5732. doi: 10.1242/jcs.108837
|
[23] | Kelly EE, Horgan CP, McCaffrey MW (2012) Rab11 proteins in health and disease. Biochem Soc Trans 40: 1360–1367. doi: 10.1042/bst20120157
|
[24] | Jeffries TR, Morgan GW, Field MC (2001) A developmentally regulated Rab11 homologue in Trypanosoma brucei is involved in recycling processes. J Cell Sci 114: 2617–2626.
|
[25] | Harris E, Yoshida K, Cardelli J, Bush J (2001) Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in Dictyostelium. J Cell Sci 114: 3035–3045.
|
[26] | Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J 3rd, et al. (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PloS One 6: e18013. doi: 10.1371/journal.pone.0018013
|
[27] | Pal A, Hall BS, Jeffries TR, Field MC (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem J 374: 443–451. doi: 10.1042/bj20030469
|
[28] | Grunfelder CG, Engstler M, Weise F, Schwarz H, Stierhof YD, et al. (2003) Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via Rab11-positive carriers. Mol Biol Cell 14: 2029–2040. doi: 10.1091/mbc.e02-10-0640
|
[29] | El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409–415. doi: 10.1126/science.1112631
|
[30] | Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TA, Rodrigues TS, et al. (2011) Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PloS One 6: e25914. doi: 10.1371/journal.pone.0025914
|
[31] | Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC, Frasch AC (2002) A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage. J Exp Med 195: 401–413. doi: 10.1084/jem.20011433
|
[32] | Cremona ML, Campetella O, Sanchez DO, Frasch AC (1999) Enzymically inactive members of the trans-sialidase family from Trypanosoma cruzi display beta-galactose binding activity. Glycobiology 9: 581–587. doi: 10.1093/glycob/9.6.581
|
[33] | Tomlinson S, Pontes de Carvalho LC, Vandekerckhove F, Nussenzweig V (1994) Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J Immunol 153: 3141–3147.
|
[34] | Buscaglia CA, Campo VA, Frasch AC, Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4: 229–236. doi: 10.1038/nrmicro1351
|
[35] | Pereira-Chioccola VL, Acosta-Serrano A, Correia de Almeida I, Ferguson MA, Souto-Padron T, et al. (2000) Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J Cell Sci 113: 1299–1307.
|
[36] | Schenkman S, Jiang MS, Hart GW, Nussenzweig V (1991) A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65: 1117–1125. doi: 10.1016/0092-8674(91)90008-m
|
[37] | Buschiazzo A, Muia R, Larrieux N, Pitcovsky T, Mucci J, et al. (2012) Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Path 8: e1002474. doi: 10.1371/journal.ppat.1002474
|
[38] | Rubin-de-Celis SS, Uemura H, Yoshida N, Schenkman S (2006) Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell Microbiol 8: 1888–1898. doi: 10.1111/j.1462-5822.2006.00755.x
|
[39] | Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O (2005) The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents. Infect Immun 73: 201–207. doi: 10.1128/iai.73.1.201-207.2005
|
[40] | Mucci J, Hidalgo A, Mocetti E, Argibay PF, Leguizamon MS, et al. (2002) Thymocyte depletion in Trypanosoma cruzi infection is mediated by trans-sialidase-induced apoptosis on nurse cells complex. Proc Nat Acad Sci USA 99: 3896–3901. doi: 10.1073/pnas.052496399
|
[41] | Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM, et al. (2010) Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses. J Biol Chem 285: 13388–13396. doi: 10.1074/jbc.m109.096305
|
[42] | Canepa GE, Degese MS, Budu A, Garcia CR, Buscaglia CA (2012) Involvement of TSSA (trypomastigote small surface antigen) in Trypanosoma cruzi invasion of mammalian cells. Biochem J 444: 211–218. doi: 10.1042/bj20120074
|
[43] | Almeida IC, Ferguson MA, Schenkman S, Travassos LR (1994) Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas' disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J 304: 793–802.
|
[44] | Almeida IC, Krautz GM, Krettli AU, Travassos LR (1993) Glycoconjugates of Trypanosoma cruzi: a 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J Clin Lab Anal 7: 307–316. doi: 10.1002/jcla.1860070603
|
[45] | Almeida IC, Milani SR, Gorin PA, Travassos LR (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol 146: 2394–2400.
|
[46] | Di Noia JM, D'Orso I, Aslund L, Sanchez DO, Frasch AC (1998) The Trypanosoma cruzi mucin family is transcribed from hundreds of genes having hypervariable regions. J Biol Chem 273: 10843–10850. doi: 10.1074/jbc.273.18.10843
|
[47] | Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M (1989) Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun 57: 1663–1667.
|
[48] | Fujita M, Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821: 1050–1058. doi: 10.1016/j.bbalip.2012.01.004
|
[49] | Fukuda M (2010) How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic. Histol Histopathol 25: 1473–1480.
|
[50] | Docampo R (2011) Molecular parasitology in the 21st century. Essays Biochem 51: 1–13.
|
[51] | Feig LA (1999) Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat Cell Biol 1: E25–27.
|
[52] | Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513–525. doi: 10.1038/nrm2728
|
[53] | Rohloff P, Rodrigues CO, Docampo R (2003) Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126: 219–230. doi: 10.1016/s0166-6851(02)00277-3
|
[54] | Pereira ME (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219: 1444–1446. doi: 10.1126/science.6338592
|
[55] | Frevert U, Schenkman S, Nussenzweig V (1992) Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of Trypanosoma cruzi. Infec Immun 60: 2349–2360.
|
[56] | Giorgi ME, de Lederkremer RM (2011) Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 346: 1389–1393. doi: 10.1016/j.carres.2011.04.006
|
[57] | Buscaglia CA, Campetella O, Leguizamon MS, Frasch AC (1998) The repetitive domain of Trypanosoma cruzi trans-sialidase enhances the immune response against the catalytic domain. J Infect Dis 177: 431–436. doi: 10.1086/514199
|
[58] | Souto-Padron T, Reyes MB, Leguizamon S, Campetella OE, Frasch AC, et al. (1989) Trypanosoma cruzi proteins which are antigenic during human infections are located in defined regions of the parasite. Eur J Cell Biol 50: 272–278.
|
[59] | Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286: 1882–1888. doi: 10.1126/science.286.5446.1882
|
[60] | Parodi AJ, Pollevick GD, Mautner M, Buschiazzo A, Sanchez DO, et al. (1992) Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. EMBO J 11: 1705–1710.
|
[61] | Vanderheyden N, Benaim G, Docampo R (1996) The role of a H+-ATPase in the regulation of cytoplasmic pH in Trypanosoma cruzi epimastigotes. Biochem J 318: 103–109.
|
[62] | Luo S, Scott DA, Docampo R (2002) Trypanosoma cruzi H+-ATPase 1 (TcHA1) and 2 (TcHA2) genes complement yeast mutants defective in H+ pumps and encode plasma membrane P-type H+-ATPases with different enzymatic properties. J Biol Chem 277: 44497–44506. doi: 10.1074/jbc.m202267200
|
[63] | Vieira M, Rohloff P, Luo S, Cunha-e-Silva NL, de Souza W, et al. (2005) Role for a P-type H+-ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 392: 467–474. doi: 10.1042/bj20051319
|
[64] | Yoshida N (2006) Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc 78: 87–111. doi: 10.1590/s0001-37652006000100010
|
[65] | Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, et al. (2009) Flagellar membrane localization via association with lipid rafts. J Cell Sci 122: 859–866. doi: 10.1242/jcs.037721
|
[66] | Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, et al. (2011) Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J Biol Chem 286: 33109–33117. doi: 10.1074/jbc.m111.240895
|
[67] | Campetella OE, Uttaro AD, Parodi AJ, Frasch AC (1994) A recombinant Trypanosoma cruzi trans-sialidase lacking the amino acid repeats retains the enzymatic activity. Mol Biochem Parasitol 64: 337–340. doi: 10.1016/0166-6851(94)00036-0
|
[68] | Oppezzo P, Obal G, Baraibar MA, Pritsch O, Alzari PM, et al. (2011) Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity. Biochim Biophys Acta 1814: 1154–1161. doi: 10.1016/j.bbapap.2011.04.012
|
[69] | Cremona ML, Sanchez DO, Frasch AC, Campetella O (1995) A single tyrosine differentiates active and inactive Trypanosoma cruzi trans-sialidases. Gene 160: 123–128. doi: 10.1016/0378-1119(95)00175-6
|
[70] | Todeschini AR, Dias WB, Girard MF, Wieruszeski JM, Mendonca-Previato L, et al. (2004) Enzymatically inactive trans-sialidase from Trypanosoma cruzi binds sialyl and beta-galactopyranosyl residues in a sequential ordered mechanism. J Biol Chem 279: 5323–5328. doi: 10.1074/jbc.m310663200
|
[71] | Todeschini AR, Girard MF, Wieruszeski JM, Nunes MP, DosReis GA, et al. (2002) Trans-sialidase from Trypanosoma cruzi binds host T-lymphocytes in a lectin manner. J Biol Chem 277: 45962–45968. doi: 10.1074/jbc.m203185200
|
[72] | Silverman JS, Bangs JD (2012) Form and function in the trypanosomal secretory pathway. Curr Opin Microbiol 15: 463–468. doi: 10.1016/j.mib.2012.03.002
|
[73] | Soares MJ, Souto-Padron T, De Souza W (1992) Identification of a large pre-lysosomal compartment in the pathogenic protozoon Trypanosoma cruzi. J Cell Sci 102: 157–167.
|
[74] | Chiribao ML, Libisch MG, Osinaga E, Parodi-Talice A, Robello C (2012) Cloning, localization and differential expression of the Trypanosoma cruzi TcOGNT-2 glycosyl transferase. Gene 498: 147–154. doi: 10.1016/j.gene.2012.02.018
|
[75] | Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, et al. (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12: 883–897. doi: 10.1021/pr300947g
|
[76] | Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50: 411–424. doi: 10.1016/j.plipres.2011.05.002
|
[77] | Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, et al. (2009) Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 8: 3642–3652. doi: 10.1021/pr800887u
|
[78] | Gabernet-Castello C, Dubois KN, Nimmo C, Field MC (2011) Rab11 function in Trypanosoma brucei: identification of conserved and novel interaction partners. Eukaryotic cell 10: 1082–1094. doi: 10.1128/ec.05098-11
|
[79] | Essid M, Gopaldass N, Yoshida K, Merrifield C, Soldati T (2012) Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol Biol Cell 23: 1267–1282. doi: 10.1091/mbc.e11-06-0576
|
[80] | Lang F, Busch GL, Volkl H (1998) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8: 1–45. doi: 10.1159/000016269
|
[81] | Go WY, Liu X, Roti MA, Liu F, Ho SN (2004) NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc Natl Acad Sci USA 101: 10673–10678. doi: 10.1073/pnas.0403139101
|
[82] | Kollien AH, Grospietsch T, Kleffmann T, Zerbst-Boroffka I, Schaub GA (2001) Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insect Physiol 47: 739–747. doi: 10.1016/s0022-1910(00)00170-0
|
[83] | Schmatz DM, Murray PK (1982) Cultivation of Trypanosoma cruzi in irradiated muscle cells: improved synchronization and enhanced trypomastigote production. Parasitology 85: 115–125. doi: 10.1017/s0031182000054202
|
[84] | Moreno SN, Silva J, Vercesi AE, Docampo R (1994) Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med 180: 1535–1540. doi: 10.1084/jem.180.4.1535
|
[85] | Bourguignon SC, de Souza W, Souto-Padron T (1998) Localization of lectin-binding sites on the surface of Trypanosoma cruzi grown in chemically defined conditions. Histochem Cell Biol 110: 527–534. doi: 10.1007/s004180050314
|
[86] | de Paulo Martins V, Okura M, Maric D, Engman DM, Vieira M, et al. (2010) Acylation-dependent export of Trypanosoma cruzi phosphoinositide-specific phospholipase C to the outer surface of amastigotes. J Biol Chem 285: 30906–30917. doi: 10.1074/jbc.m110.142190
|