全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice

DOI: doi/10.1371/journal.ppat.1004208

Full-Text   Cite this paper   Add to My Lib

Abstract:

Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.

References

[1]  Ding S (2008) Virology: Principles and Applications. The Yale Journal of Biology and Medicine 81: 155.
[2]  Osterhaus A (2009) Timely tale of avian flu. Nature 462: 986. doi: 10.1038/462986a
[3]  Yamada T, Dautry A, Walport M (2008) Ready for avian flu? Nature 454: 162. doi: 10.1038/454162a
[4]  McFarland MD, Hill HT (1987) Vaccination of mice and swine with a pseudorabies virus mutant lacking thymidine kinase activity. Can J Vet Res 51: 340–344.
[5]  Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, et al. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 100: 2718–2723. doi: 10.1073/pnas.0437841100
[6]  De Clercq E, Field HJ (2006) Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol 147: 1–11. doi: 10.1038/sj.bjp.0706446
[7]  Laskin OL (1984) Acyclovir. Pharmacology and clinical experience. Arch Intern Med 144: 1241–1246. doi: 10.1001/archinte.1984.00350180181025
[8]  Erlich KS, Mills J (1985) Chemotherapy for herpes simplex virus infections. West J Med 143: 648–655.
[9]  Fox Z, Dragsted UB, Gerstoft J, Phillips AN, Kjaer J, et al. (2006) A randomized trial to evaluate continuation versus discontinuation of lamivudine in individuals failing a lamivudine-containing regimen: the COLATE trial. Antivir Ther 11: 761–770.
[10]  Koziel MJ, Peters MG (2007) Viral hepatitis in HIV infection. N Engl J Med 356: 1445–1454. doi: 10.1056/nejmra065142
[11]  Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, et al. (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437: 1108. doi: 10.1038/4371108a
[12]  Ferraris O, Lina B (2008) Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. J Clin Virol 41: 13–19. doi: 10.1016/j.jcv.2007.10.020
[13]  Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26: 29–37. doi: 10.1016/s1386-6532(02)00263-9
[14]  Kwon MH, Lee MS, Kim KH, Park S, Shin HJ, et al. (2002) Production and characterization of an anti-idiotypic single chain Fv that recognizes an anti-DNA antibody. Immunol Invest 31: 205–218. doi: 10.1081/imm-120016241
[15]  Duan L, Zhang H, Oakes JW, Bagasra O, Pomerantz RJ (1994) Molecular and virological effects of intracellular anti-Rev single-chain variable fragments on the expression of various human immunodeficiency virus-1 strains. Human gene therapy 5: 1315–1324. doi: 10.1089/hum.1994.5.11-1315
[16]  Shaheen F, Duan L, Zhu M, Bagasra O, Pomerantz RJ (1996) Targeting human immunodeficiency virus type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle. Journal of virology 70: 3392–3400.
[17]  Levy-Mintz P, Duan L, Zhang H, Hu B, Dornadula G, et al. (1996) Intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. Journal of virology 70: 8821–8832.
[18]  Marin M, Pelegrin-Zurilla M, Bachrach E, Noel D, Brockly F, et al. (2000) Antiviral activity of an intracellularly expressed single-chain antibody fragment directed against the murine leukemia virus capsid protein. Human gene therapy 11: 389–401. doi: 10.1089/10430340050015860
[19]  Montandon PE, Montandon F, Fan H (1982) Methylation state and DNase I sensitivity of chromatin containing Moloney murine leukemia virus DNA in exogenously infected mouse cells. J Virol 44: 475–486.
[20]  Espert L, Degols G, Gongora C, Blondel D, Williams BR, et al. (2003) ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J Biol Chem 278: 16151–16158. doi: 10.1074/jbc.m209628200
[21]  Espert L, Degols G, Lin YL, Vincent T, Benkirane M, et al. (2005) Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J Gen Virol 86: 2221–2229. doi: 10.1099/vir.0.81074-0
[22]  Sano T, Nagayama A, Ogawa T, Ishida I, Okada Y (1997) Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat Biotechnol 15: 1290–1294. doi: 10.1038/nbt1197-1290
[23]  Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, et al. (2006) Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J Biol Chem 281: 15287–15295. doi: 10.1074/jbc.m600937200
[24]  Park SY, Lee WR, Lee SC, Kwon MH, Kim YS, et al. (2008) Crystal structure of single-domain VL of an anti-DNA binding antibody 3D8 scFv and its active site revealed by complex structures of a small molecule and metals. Proteins 71: 2091–2096. doi: 10.1002/prot.22011
[25]  Jun HR, Pham CD, Lim SI, Lee SC, Kim YS, et al. (2010) An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus. Biochem Biophys Res Commun 395: 484–489. doi: 10.1016/j.bbrc.2010.04.032
[26]  Lee G, Shim H-K, Kwon M-H, Son S-H, Kim K-Y, et al. (2013) A nucleic acid hydrolyzing recombinant antibody confers resistance to curtovirus infection in tobacco. Plant Cell, Tissue and Organ Culture (PCTOC) 115: 179–187. doi: 10.1007/s11240-013-0357-4
[27]  Lee G, Shim H-K, Kwon M-H, Son S-H, Kim K-Y, et al. (2013) RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum. Plant Cell, Tissue and Organ Culture (PCTOC) 115: 189–197. doi: 10.1007/s11240-013-0351-x
[28]  Ory DS, Neugeboren BA, Mulligan RC (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A 93: 11400–11406. doi: 10.1073/pnas.93.21.11400
[29]  Foster MH, Kieber-Emmons T, Ohliger M, Madaio MP (1994) Molecular and structural analysis of nuclear localizing anti-DNA lupus antibodies. Immunologic research 13: 186–206. doi: 10.1007/bf02918279
[30]  Willard M (2002) Rapid directional translocations in virus replication. J Virol 76: 5220–5232. doi: 10.1128/jvi.76.10.5220-5232.2002
[31]  Demmin GL, Clase AC, Randall JA, Enquist L, Banfield BW (2001) Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. Journal of virology 75: 10856–10869. doi: 10.1128/jvi.75.22.10856-10869.2001
[32]  Thakur CS, Xu Z, Wang Z, Novince Z, Silverman RH (2005) A convenient and sensitive fluorescence resonance energy transfer assay for RNase L and 2′, 5′oligoadenylates. Methods in molecular medicine 116: 103. doi: 10.1385/1-59259-939-7:103
[33]  Honess RW, Watson DH (1977) Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. J Virol 21: 584–600.
[34]  Placek BJ, Berger SL (2010) Chromatin dynamics during herpes simplex virus-1 lytic infection. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1799: 223–227. doi: 10.1016/j.bbagrm.2010.01.012
[35]  Conn KL, Hendzel MJ, Schang LM (2011) Core histones H2B and H4 are mobilized during infection with herpes simplex virus 1. Journal of virology 85: 13234–13252. doi: 10.1128/jvi.06038-11
[36]  Bolden AH, Nalin CM, Ward CA, Poonian MS, McComas WW, et al. (1985) DNA methylation: sequences flanking C-G pairs modulate the specificity of the human DNA methylase. Nucleic Acids Res 13: 3479–3494. doi: 10.1093/nar/13.10.3479
[37]  DeLange RJ, Smith EL (1971) Histones: structure and function. Annu Rev Biochem 40: 279–314. doi: 10.1146/annurev.bi.40.070171.001431
[38]  O'Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14: 3946–3957.
[39]  Oh J, Fraser NW (2008) Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. Journal of virology 82: 3530–3537. doi: 10.1128/jvi.00586-07
[40]  Jang J, Jeong J, Jun H, Lee S, Kim J, et al. (2009) A nucleic acid-hydrolyzing antibody penetrates into cells via caveolae-mediated endocytosis, localizes in the cytosol and exhibits cytotoxicity. Cellular and Molecular Life Sciences 66: 1985–1997. doi: 10.1007/s00018-009-9179-2
[41]  Haimov-Kochman R, Fisher SJ, Winn VD (2006) Modification of the standard Trizol-based technique improves the integrity of RNA isolated from RNase-rich placental tissue. Clin Chem 52: 159–160. doi: 10.1373/clinchem.2005.059758
[42]  Lomonte P, Sullivan KF, Everett RD (2001) Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem 276: 5829–5835. doi: 10.1074/jbc.m008547200
[43]  Moerdyk-Schauwecker M, Stein DA, Eide K, Blouch RE, Bildfell R, et al. (2009) Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res 84: 131–141. doi: 10.1016/j.antiviral.2009.07.020
[44]  Peng T, Zhu J, Hwangbo Y, Corey L, Bumgarner RE (2008) Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J Virol 82: 1934–1945. doi: 10.1128/jvi.01649-07
[45]  Lukonis CJ, Burkham J, Weller SK (1997) Herpes simplex virus type 1 prereplicative sites are a heterogeneous population: only a subset are likely to be precursors to replication compartments. J Virol 71: 4771–4781.
[46]  Davison MD, Rixon FJ, Davison AJ (1992) Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. J Gen Virol 73 (Pt 10) 2709–2713. doi: 10.1099/0022-1317-73-10-2709
[47]  Rixon FJ, Davison MD, Davison AJ (1990) Identification of the genes encoding two capsid proteins of herpes simplex virus type 1 by direct amino acid sequencing. J Gen Virol 71 (Pt 5) 1211–1214. doi: 10.1099/0022-1317-71-5-1211
[48]  Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24: 347–357. doi: 10.1038/sj.emboj.7600516
[49]  Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42: 405–426. doi: 10.1354/vp.42-4-405

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133