全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8

DOI: doi/10.1371/journal.ppat.1004199

Full-Text   Cite this paper   Add to My Lib

Abstract:

The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3Dpol) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3Dpol enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3Dpol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3Dpol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.

References

[1]  Bedard KM, Semler BL (2004) Regulation of picornavirus gene expression. Microbes and infection/Institut Pasteur 6: 702–713. doi: 10.1016/j.micinf.2004.03.001
[2]  Weidman MK, Sharma R, Raychaudhuri S, Kundu P, Tsai W, et al. (2003) The interaction of cytoplasmic RNA viruses with the nucleus. Virus research 95: 75–85. doi: 10.1016/j.virusres.2003.09.006
[3]  Weng KF, Li ML, Hung CT, Shih SR (2009) Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS pathogens 5: e1000593. doi: 10.1371/journal.ppat.1000593
[4]  Chang LY, Huang LM, Gau SS, Wu YY, Hsia SH, et al. (2007) Neurodevelopment and cognition in children after enterovirus 71 infection. The New England journal of medicine 356: 1226–1234. doi: 10.1056/nejmoa065954
[5]  Whitton JL, Cornell CT, Feuer R (2005) Host and virus determinants of picornavirus pathogenesis and tropism. Nature reviews Microbiology 3: 765–776. doi: 10.1038/nrmicro1284
[6]  Lin KH, Hwang KP, Ke GM, Wang CF, Ke LY, et al. (2006) Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. Journal of medical virology 78: 254–262. doi: 10.1002/jmv.20534
[7]  Ding NZ, Wang XM, Sun SW, Song Q, Li SN, et al. (2009) Appearance of mosaic enterovirus 71 in the 2008 outbreak of China. Virus research 145: 157–161. doi: 10.1016/j.virusres.2009.06.006
[8]  Seiff A (2012) Cambodia unravels cause of mystery illness. Lancet 380: 206. doi: 10.1016/s0140-6736(12)61200-8
[9]  Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, et al. (2007) Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. Journal of virology 81: 3583–3596. doi: 10.1128/jvi.02306-06
[10]  Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. The EMBO journal 23: 3462–3471. doi: 10.1038/sj.emboj.7600357
[11]  Paul AV, van Boom JH, Filippov D, Wimmer E (1998) Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393: 280–284. doi: 10.1038/30529
[12]  Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, et al. (2003) Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. Journal of virology 77: 891–904. doi: 10.1128/jvi.77.2.891-904.2003
[13]  Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, et al. (2003) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. The Journal of biological chemistry 278: 43951–43960. doi: 10.1074/jbc.m307441200
[14]  Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, et al. (2010) Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141: 799–811. doi: 10.1016/j.cell.2010.03.050
[15]  Ng KK, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases. Current topics in microbiology and immunology 320: 137–156. doi: 10.1007/978-3-540-75157-1_7
[16]  Wu Y, Lou Z, Miao Y, Yu Y, Dong H, et al. (2010) Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein & cell 1: 491–500. doi: 10.1007/s13238-010-0061-7
[17]  Campagnola G, Weygandt M, Scoggin K, Peersen O (2008) Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases. Journal of virology 82: 9458–9464. doi: 10.1128/jvi.00647-08
[18]  Chen TC, Chang HY, Lin PF, Chern JH, Hsu JT, et al. (2009) Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrobial agents and chemotherapy 53: 2740–2747. doi: 10.1128/aac.00101-09
[19]  Aminev AG, Amineva SP, Palmenberg AC (2003) Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus research 95: 59–73. doi: 10.1016/s0168-1702(03)00163-1
[20]  Amineva SP, Aminev AG, Palmenberg AC, Gern JE (2004) Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. The Journal of general virology 85: 2969–2979. doi: 10.1099/vir.0.80164-0
[21]  Krogerus C, Samuilova O, Poyry T, Jokitalo E, Hyypia T (2007) Intracellular localization and effects of individually expressed human parechovirus 1 non-structural proteins. The Journal of general virology 88: 831–841. doi: 10.1099/vir.0.82201-0
[22]  Sharma R, Raychaudhuri S, Dasgupta A (2004) Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320: 195–205. doi: 10.1016/j.virol.2003.10.020
[23]  Clark ME, Hammerle T, Wimmer E, Dasgupta A (1991) Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. The EMBO journal 10: 2941–2947.
[24]  Clark ME, Lieberman PM, Berk AJ, Dasgupta A (1993) Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Molecular and cellular biology 13: 1232–1237.
[25]  Yalamanchili P, Datta U, Dasgupta A (1997) Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. Journal of virology 71: 1220–1226. doi: 10.1006/viro.1997.8862
[26]  Yalamanchili P, Weidman K, Dasgupta A (1997) Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239: 176–185. doi: 10.1006/viro.1997.8862
[27]  Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G, et al. (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. Journal of virology 64: 748–756.
[28]  Weidman MK, Yalamanchili P, Ng B, Tsai W, Dasgupta A (2001) Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291: 260–271. doi: 10.1006/viro.2001.1215
[29]  Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Molecular cell 12: 5–14. doi: 10.1016/s1097-2765(03)00270-3
[30]  Turner IA, Norman CM, Churcher MJ, Newman AJ (2004) Roles of the U5 snRNP in spliceosome dynamics and catalysis. Biochemical Society transactions 32: 928–931. doi: 10.1042/bst0320928
[31]  Valadkhan S, Jaladat Y (2010) The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 10: 4128–4141. doi: 10.1002/pmic.201000354
[32]  Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC (2007) Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Molecular cell 25: 615–624. doi: 10.1016/j.molcel.2007.01.023
[33]  Galej WP, Oubridge C, Newman AJ, Nagai K (2013) Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493: 638–643. doi: 10.1038/nature11843
[34]  Butler MI, Poulter RT (2005) The PRP8 inteins in Cryptococcus are a source of phylogenetic and epidemiological information. Fungal genetics and biology: FG & B 42: 452–463. doi: 10.1016/j.fgb.2005.01.011
[35]  Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136: 701–718. doi: 10.1016/j.cell.2009.02.009
[36]  Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. Rna 11: 533–557. doi: 10.1261/rna.2220705
[37]  Liu S, Rauhut R, Vornlocher HP, Luhrmann R (2006) The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. Rna 12: 1418–1430. doi: 10.1261/rna.55406
[38]  Li X, Zhang W, Xu T, Ramsey J, Zhang L, et al. (2013) Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly. Nucleic acids research 41: 3805–3818. doi: 10.1093/nar/gkt062
[39]  Umen JG, Guthrie C (1995) The second catalytic step of pre-mRNA splicing. Rna 1: 869–885.
[40]  Kramer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annual review of biochemistry 65: 367–409. doi: 10.1146/annurev.biochem.65.1.367
[41]  Wachtel C, Manley JL (2009) Splicing of mRNA precursors: the role of RNAs and proteins in catalysis. Molecular bioSystems 5: 311–316. doi: 10.1039/b820828j
[42]  Aronova A, Bacikova D, Crotti LB, Horowitz DS, Schwer B (2007) Functional interactions between Prp8, Prp18, Slu7, and U5 snRNA during the second step of pre-mRNA splicing. Rna 13: 1437–1444. doi: 10.1261/rna.572807
[43]  Lin KT, Lu RM, Tarn WY (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Molecular and cellular biology 24: 9176–9185. doi: 10.1128/mcb.24.20.9176-9185.2004
[44]  Lee KM, Hsu Ia W, Tarn WY (2010) TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic acids research 38: 3340–3350. doi: 10.1093/nar/gkq017
[45]  Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4: 44–57. doi: 10.1038/nprot.2008.211
[46]  McBride AE, Schlegel A, Kirkegaard K (1996) Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proceedings of the National Academy of Sciences of the United States of America 93: 2296–2301. doi: 10.1073/pnas.93.6.2296
[47]  Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, et al. (2009) Viral and host proteins involved in picornavirus life cycle. Journal of biomedical science 16: 103. doi: 10.1186/1423-0127-16-103
[48]  Belsham GJ (2009) Divergent picornavirus IRES elements. Virus research 139: 183–192. doi: 10.1016/j.virusres.2008.07.001
[49]  Ho BC, Yu SL, Chen JJ, Chang SY, Yan BS, et al. (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell host & microbe 9: 58–69. doi: 10.1016/j.chom.2010.12.001
[50]  Alvarez E, Castello A, Carrasco L, Izquierdo JM (2011) Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochemical and biophysical research communications 414: 142–147. doi: 10.1016/j.bbrc.2011.09.040
[51]  Shih SR, Stollar V, Lin JY, Chang SC, Chen GW, et al. (2004) Identification of genes involved in the host response to enterovirus 71 infection. Journal of neurovirology 10: 293–304. doi: 10.1080/13550280490499551
[52]  Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353: 90–94. doi: 10.1038/353090a0
[53]  Johannes G, Sarnow P (1998) Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. Rna 4: 1500–1513. doi: 10.1017/s1355838298981080
[54]  Thoma C, Bergamini G, Galy B, Hundsdoerfer P, Hentze MW (2004) Enhancement of IRES-mediated translation of the c-myc and BiP mRNAs by the poly(A) tail is independent of intact eIF4G and PABP. Molecular cell 15: 925–935. doi: 10.1016/j.molcel.2004.08.021
[55]  Gohara DW, Ha CS, Kumar S, Ghosh B, Arnold JJ, et al. (1999) Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli. Protein expression and purification 17: 128–138. doi: 10.1006/prep.1999.1100
[56]  van Ooij MJ, Vogt DA, Paul A, Castro C, Kuijpers J, et al. (2006) Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. The Journal of general virology 87: 103–113. doi: 10.1099/vir.0.81297-0
[57]  Pathak HB, Arnold JJ, Wiegand PN, Hargittai MR, Cameron CE (2007) Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. The Journal of biological chemistry 282: 16202–16213. doi: 10.1074/jbc.m610608200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133