全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish

DOI: doi/10.1371/journal.ppat.1004190

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tuberculosis is still a major health problem worldwide. Currently it is not known what kind of immune responses lead to successful control and clearance of Mycobacterium tuberculosis. This gap in knowledge is reflected by the inability to develop sufficient diagnostic and therapeutic tools to fight tuberculosis. We have used the Mycobacterium marinum infection model in the adult zebrafish and taken advantage of heterogeneity of zebrafish population to dissect the characteristics of adaptive immune responses, some of which are associated with well-controlled latency or bacterial clearance while others with progressive infection. Differences in T cell responses between subpopulations were measured at the transcriptional level. It was discovered that a high total T cell level was usually associated with lower bacterial loads alongside with a T helper 2 (Th2)-type gene expression signature. At late time points, spontaneous reactivation with apparent symptoms was characterized by a low Th2/Th1 marker ratio and a substantial induction of foxp3 reflecting the level of regulatory T cells. Characteristic gata3/tbx21 has potential as a biomarker for the status of mycobacterial disease.

References

[1]  Abebe F, Bjune G (2009) The protective role of antibody responses during mycobacterium tuberculosis infection. Clinical & Experimental Immunology 157 (2) 235–243. doi: 10.1111/j.1365-2249.2009.03967.x
[2]  World Health Organization. (2013) Global tuberculosis report 2013. http://www.who.int/tb/publications/globa?l_report/en/
[3]  Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, et al. (2009) The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nature Reviews Microbiology 7 (12) 845–855. doi: 10.1038/nrmicro2236
[4]  Havlir DV, Barnes PF (1999) Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 340 (5) 367–373. doi: 10.1056/nejm199902043400507
[5]  Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne mycobacterium tuberculosis infection in mice. J Exp Med 193 (3) 271–280. doi: 10.1084/jem.193.3.271
[6]  Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, et al. (1993) An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection. J Exp Med 178 (6) 2249. doi: 10.1084/jem.178.6.2249
[7]  Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, et al. (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178 (6) 2243–2247. doi: 10.1084/jem.178.6.2243
[8]  Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186 (1) 39–45. doi: 10.1084/jem.186.1.39
[9]  Orme IM, Roberts AD, Griffin JP, Abrams JS (1993) Cytokine secretion by CD4 T lymphocytes acquired in response to mycobacterium tuberculosis infection. J Immunol 151 (1) 518–525.
[10]  Hernandez-Pando R, Orozcoe H, Sampieri A, Pavon L, Velasquillo C, et al. (1996) Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology 89 (1) 26–33.
[11]  Jung YJ, LaCourse R, Ryan L, North RJ (2002) Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against mycobacterium tuberculosis lung infection in mice. Infect Immun 70 (11) 6436–6443. doi: 10.1128/iai.70.11.6436-6443.2002
[12]  Kozakiewicz L, Phuah J, Flynn J, Chan J. (2013) The role of B cells and humoral immunity in mycobacterium tuberculosis infection. In: Anonymous The New Paradigm of Immunity to Tuberculosis. Springer. pp. 225–250.
[13]  Gupta U, Katoch V (2005) Animal models of tuberculosis. Tuberculosis 85 (5) 277–293. doi: 10.1016/j.tube.2005.08.008
[14]  Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, et al. (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77 (10) 4631. doi: 10.1128/iai.00592-09
[15]  Subbian S, O'Brien P, Kushner NL, Yang G, Tsenova L, et al. (2013) Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Commun Signal 11 (1) 16–811X-11-16. doi: 10.1186/1478-811x-11-16
[16]  Subbian S, Tsenova L, O'Brien P, Yang G, Kushner NL, et al. (2012) Spontaneous latency in a rabbit model of pulmonary tuberculosis. The American Journal of Pathology 181 (5) 1711–1724. doi: 10.1016/j.ajpath.2012.07.019
[17]  Parikka M, Hammarén MM, Harjula SE, Halfpenny NJ, Oksanen KE, et al. (2012) Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathogens 8 (9) e1002944. doi: 10.1371/journal.ppat.1002944
[18]  Kaattari I, Rhodes M, Kaattari S, Shotts E (2006) The evolving story of mycobacterium tuberculosis clade members detected in fish. J Fish Dis 29 (9) 509–520. doi: 10.1111/j.1365-2761.2006.00744.x
[19]  Takaki K, Cosma CL, Troll MA, Ramakrishnan L (2012) An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Reports 2 (1) 175–84. doi: 10.1016/j.celrep.2012.06.008
[20]  Berg RD, Ramakrishnan L (2012) Insights into tuberculosis from the zebrafish model. Trends Mol Med 18 (12) 689–90. doi: 10.1016/j.molmed.2012.10.002
[21]  Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12 (7) 1000. doi: 10.2174/138945011795677809
[22]  Renshaw SA, Trede NS (2012) A model 450 million years in the making: Zebrafish and vertebrate immunity. Disease Models & Mechanisms 5 (1) 38–47. doi: 10.1242/dmm.007138
[23]  Olson NC, Sallam R, Doyle MF, Tracy RP, Huber SA (2013) T helper cell polarization in healthy people: Implications for cardiovascular disease. Journal of Cardiovascular Translational Research 6 (5) 772–786. doi: 10.1007/s12265-013-9496-6
[24]  Hawkins RD, Larjo A, Tripathi SK, Wagner U, Luu Y, et al. (2013) Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. Immunity 38 (6) 1271–1284. doi: 10.1016/j.immuni.2013.05.011
[25]  Lin PL, Flynn JAL (2010) Understanding latent tuberculosis: A moving target. The Journal of Immunology 185 (1) 15. doi: 10.4049/jimmunol.0903856
[26]  Yoder JA, Orcutt TM, Traver D, Litman GW (2007) Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene 401 (1) 154–164. doi: 10.1016/j.gene.2007.07.014
[27]  Kanhere A, Hertweck A, Bhatia U, G?kmen MR, Perucha E, et al. (2012) T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nature Communications 3: 1268. doi: 10.1038/ncomms2260
[28]  Wang L, Shang N, Feng H, Guo Q, Dai H (2013) Molecular cloning of grass carp (ctenopharyngodon idellus) T-bet and GATA-3, and their expression profiles with IFN-γ in response to grass carp reovirus (GCRV) infection. Fish Physiol Biochem 39 (4) 793–805. doi: 10.1007/s10695-012-9741-y
[29]  Mitra S, Alnabulsi A, Secombes CJ, Bird S (2010) Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, danio rerio. FEBS Journal 277 (1) 128–147. doi: 10.1111/j.1742-4658.2009.07460.x
[30]  Kumari J, Bogwald J, Dalmo RA (2009) Transcription factor GATA-3 in atlantic salmon (salmo salar): Molecular characterization, promoter activity and expression analysis. Mol Immunol 46 (15) 3099–3107. doi: 10.1016/j.molimm.2009.06.008
[31]  Zhu LY, Pan PP, Fang W, Shao JZ, Xiang LX (2012) Essential role of IL-4 and IL-4Ralpha interaction in adaptive immunity of zebrafish: Insight into the origin of Th2-like regulatory mechanism in ancient vertebrates. J Immunol 188 (11) 5571–5584. doi: 10.4049/jimmunol.1102259
[32]  Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, et al. (2013) The astonishing diversity of ig classes and B cell repertoires in teleost fish. Frontiers in Immunology 4: 28. doi: 10.3389/fimmu.2013.00028
[33]  Lugo-Villarino G, Balla KM, Stachura DL, Ba?uelos K, Werneck MBF, et al. (2010) Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences 107 (36) 15850. doi: 10.1073/pnas.1000494107
[34]  Oksanen KE, Halfpenny NJ, Sherwood E, Harjula SE, Hammarén MM, et al. (2013) An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 31 (45) 5202–5209. doi: 10.1016/j.vaccine.2013.08.093
[35]  Zea AH, Ochoa MT, Ghosh P, Longo DL, Alvord WG, et al. (1998) Changes in expression of signal transduction proteins in T lymphocytes of patients with leprosy. Infect Immun Feb;66 (2) 499–504.
[36]  Kumar S, Naqvi RA, Khanna N, Rao DN (2011) Disruption of HLA-DR raft, deregulations of Lck-ZAP-70-Cbl-b cross-talk and miR181a towards T cell hyporesponsiveness in leprosy. Mol Immunol 48 (9–10) 1178–90. doi: 10.1016/j.molimm.2011.02.012
[37]  Mahon RN, Sande OJ, Rojas RE, Levine AD, Harding CV, et al. (2012) Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol 275 (1–2) 98–105. doi: 10.1016/j.cellimm.2012.02.009
[38]  Hirsch CS, Johnson JL, Okwera A, Kanost RA, Wu M, et al. (2005) Mechanisms of apoptosis of T-cells in human tuberculosis. J Clin Immunol 25 (4) 353–364. doi: 10.1007/s10875-005-4841-4
[39]  Urdahl K, Shafiani S, Ernst J (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunology 4 (3) 288–293. doi: 10.1038/mi.2011.10
[40]  Smith BM, Menzies D (2011) Treatment of latent TB: First do no harm. Expert Review of Anti-Infective Therapy 9 (5) 491–493. doi: 10.1586/eri.11.35
[41]  Wu B, Huang C, Kato-Maeda M, Hopewell PC, Daley CL, et al. (2007) Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease. J Immunol 178 (6) 3688–3694. doi: 10.4049/jimmunol.178.6.3688
[42]  Belkaid Y (2008) Role of Foxp3-positive regulatory T cells during infection. Eur J Immunol 38 (4) 918–921. doi: 10.1002/eji.200738120
[43]  Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207 (7) 1409–1420. doi: 10.1084/jem.20091885
[44]  Kaufmann SH (2013) Tuberculosis vaccines: Time to think about the next generation. 25 (2) 172–181. doi: 10.1016/j.smim.2013.04.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133