Host arginase 1 (arg1) expression is a significant contributor to the pathogenesis of progressive visceral leishmaniasis (VL), a neglected tropical disease caused by the intracellular protozoan Leishmania donovani. Previously we found that parasite-induced arg1 expression in macrophages was dependent on STAT6 activation. Arg1 expression was amplified by, but did not require, IL-4, and required de novo synthesis of unknown protein(s). To further explore the mechanisms involved in arg1 regulation in VL, we screened a panel of kinase inhibitors and found that inhibitors of growth factor signaling reduced arg1 expression in splenic macrophages from hamsters with VL. Analysis of growth factors and their signaling pathways revealed that the Fibroblast Growth Factor Receptor 1 (FGFR-1) and Insulin-like Growth Factor 1 Receptor (IGF-1R) and a number of downstream signaling proteins were activated in splenic macrophages isolated from hamsters infected with L. donovani. Recombinant FGF-2 and IGF-1 increased the expression of arg1 in L. donovani infected hamster macrophages, and this induction was augmented by IL-4. Inhibition of FGFR-1 and IGF-1R decreased arg1 expression and restricted L. donovani replication in both in vitro and ex vivo models of infection. Inhibition of the downstream signaling molecules JAK and AKT also reduced the expression of arg1 in infected macrophages. STAT6 was activated in infected macrophages exposed to either FGF-2 or IGF-1, and STAT6 was critical to the FGFR-1- and IGF-1R-mediated expression of arg1. The converse was also true as inhibition of FGFR-1 and IGF-1R reduced the activation of STAT6 in infected macrophages. Collectively, these data indicate that the FGFR/IGF-1R and IL-4 signaling pathways converge at STAT6 to promote pathologic arg1 expression and intracellular parasite survival in VL. Targeted interruption of these pathological processes offers an approach to restrain this relentlessly progressive disease.
References
[1]
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671. doi: 10.1371/journal.pone.0035671
[2]
Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, et al. (2012) Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 8: e1002417. doi: 10.1371/journal.ppat.1002417
[3]
Green SJ, Nacy CA, Meltzer MS (1991) Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol 50: 93–103.
[4]
Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, et al. (1991) Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 21: 3009–3014. doi: 10.1002/eji.1830211216
[5]
Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604. doi: 10.1016/j.immuni.2010.05.007
[6]
Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27: 451–483. doi: 10.1146/annurev.immunol.021908.132532
[7]
Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S (1998) Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177: 815–818. doi: 10.1086/517817
[8]
Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, et al. (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma [see comments]. J Clin Invest 91: 1644–1648. doi: 10.1172/jci116372
[9]
Gidwani K, Jones S, Kumar R, Boelaert M, Sundar S (2011) Interferon-gamma release assay (modified QuantiFERON) as a potential marker of infection for Leishmania donovani, a proof of concept study. PLoS Negl Trop Dis 5: e1042. doi: 10.1371/journal.pntd.0001042
[10]
Singh OP, Gidwani K, Kumar R, Nylen S, Jones SL, et al. (2012) Reassessment of immune correlates in human visceral leishmaniasis as defined by cytokine release in whole blood. Clin Vaccine Immunol 19: 961–966. doi: 10.1128/cvi.00143-12
[11]
Hailu A, van Baarle D, Knol GJ, Berhe N, Miedema F, et al. (2005) T cell subset and cytokine profiles in human visceral leishmaniasis during active and asymptomatic or sub-clinical infection with Leishmania donovani. Clin Immunol 117: 182–191. doi: 10.1016/j.clim.2005.06.015
[12]
Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. doi: 10.1084/jem.20061141
[13]
Sundar S, Reed SG, Sharma S, Mehrotra A, Murray HW (1997) Circulating T helper 1 (Th1) cell- and Th2 cell-associated cytokines in Indian patients with visceral leishmaniasis. Am J Trop Med Hyg 56: 522–525.
[14]
Zwingenberger K, Harms G, Pedrosa C, Omena S, Sandkamp B, et al. (1990) Determinants of the immune response in visceral leishmaniasis: evidence for predominance of endogenous interleukin 4 over interferon-gamma production. Clin Immunol Immunopathol 57: 242–249. doi: 10.1016/0090-1229(90)90038-r
[15]
Gautam S, Kumar R, Maurya R, Nylen S, Ansari N, et al. (2011) IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J Infect Dis 204: 1134–1137. doi: 10.1093/infdis/jir461
[16]
Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18: 293–305. doi: 10.1128/cmr.18.2.293-305.2005
[17]
Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like response. J Immunol 166: 1912–1920. doi: 10.4049/jimmunol.166.3.1912
[18]
Perez LE, Chandrasekar B, Saldarriaga OA, Zhao W, Arteaga LT, et al. (2006) Reduced nitric oxide synthase 2 (NOS2) promoter activity in the Syrian hamster renders the animal functionally deficient in NOS2 activity and unable to control an intracellular pathogen. J Immunol 176: 5519–5528. doi: 10.4049/jimmunol.176.9.5519
[19]
Iniesta V, Gomez-Nieto LC, Corraliza I (2001) The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J Exp Med 193: 777–784. doi: 10.1084/jem.193.6.777
[20]
Stempin CC, Dulgerian LR, Garrido VV, Cerban FM (2010) Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol 2010: 683485. doi: 10.1155/2010/683485
[21]
Iniesta V, Carlos Gomez-Nieto L, Molano I, Mohedano A, Carcelen J, et al. (2002) Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol 24: 113–118. doi: 10.1046/j.1365-3024.2002.00444.x
[22]
Iniesta V, Carcelen J, Molano I, Peixoto PM, Redondo E, et al. (2005) Arginase I induction during Leishmania major infection mediates the development of disease. Infect Immun 73: 6085–6090. doi: 10.1128/iai.73.9.6085-6090.2005
[23]
Kropf P, Fuentes JM, Fahnrich E, Arpa L, Herath S, et al. (2005) Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. Faseb J 19: 1000–1002. doi: 10.1096/fj.04-3416fje
[24]
Stempin C, Giordanengo L, Gea S, Cerban F (2002) Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen. J Leukoc Biol 72: 727–734.
[25]
Babu S, Kumaraswami V, Nutman TB (2009) Alternatively activated and immunoregulatory monocytes in human filarial infections. J Infect Dis 199: 1827–1837. doi: 10.1086/599090
[26]
Benoit M, Barbarat B, Bernard A, Olive D, Mege JL (2008) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38: 1065–1070. doi: 10.1002/eji.200738067
[27]
El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, et al. (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9: 1399–1406. doi: 10.1038/ni.1671
[28]
Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, et al. (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174: 6561 author reply 6561–6562. doi: 10.4049/jimmunol.174.11.6561
[29]
Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222: 180–191. doi: 10.1111/j.1600-065x.2008.00608.x
[30]
Rodriguez NE, Chang HK, Wilson ME (2004) Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 72: 2111–2122. doi: 10.1128/iai.72.4.2111-2122.2004
[31]
Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, et al. (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191: 773–784. doi: 10.4049/jimmunol.1300113
[32]
Pessanha AP, Martins RA, Mattos-Guaraldi AL, Vianna A, Moreira LO (2012) Arginase-1 expression in granulomas of tuberculosis patients. FEMS Immunol Med Microbiol 66: 265–268. doi: 10.1111/j.1574-695x.2012.01012.x
[33]
Ochoa JB, Bernard AC, O'Brien WE, Griffen MM, Maley ME, et al. (2001) Arginase I expression and activity in human mononuclear cells after injury. Ann Surg 233: 393–399. doi: 10.1097/00000658-200103000-00014
[34]
Abebe T, Hailu A, Woldeyes M, Mekonen W, Bilcha K, et al. (2012) Local increase of arginase activity in lesions of patients with cutaneous leishmaniasis in ethiopia. PLoS Negl Trop Dis 6: e1684. doi: 10.1371/journal.pntd.0001684
[35]
Abebe T, Takele Y, Weldegebreal T, Cloke T, Closs E, et al. (2013) Arginase activity - a marker of disease status in patients with visceral leishmaniasis in ethiopia. PLoS Negl Trop Dis 7: e2134. doi: 10.1371/journal.pntd.0002134
[36]
Muller AK, Meyer M, Werner S (2012) The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 23: 963–970. doi: 10.1016/j.semcdb.2012.09.015
[37]
Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, et al. (2009) Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214: 761–777. doi: 10.1016/j.imbio.2009.06.014
[38]
Osorio Y, Travi BL, Renslo AR, Peniche AG, Melby PC (2011) Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system. PLoS Negl Trop Dis 5: e962. doi: 10.1371/journal.pntd.0000962
[39]
Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, et al. (2000) Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275: 15099–15105. doi: 10.1074/jbc.m000089200
Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, et al. (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25: 358–369. doi: 10.1096/fj.10-171579
[42]
Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83: 835–870.
[43]
Yun YR, Won JE, Jeon E, Lee S, Kang W, et al. (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010: 218142. doi: 10.4061/2010/218142
[44]
Modolell M, Choi BS, Ryan RO, Hancock M, Titus RG, et al. (2009) Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis. PLoS Negl Trop Dis 3: e480. doi: 10.1371/journal.pntd.0000480
[45]
Noel W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P, Beschin A (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20: 126–133. doi: 10.1016/j.coi.2007.05.007
[46]
Puzik A, Rupp J, Troger B, Gopel W, Herting E, et al. (2012) Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-gamma. Cytokine 60: 369–376. doi: 10.1016/j.cyto.2012.07.025
[47]
Jimenez-Sousa MA, Almansa R, de la Fuente C, Caro-Paton A, Ruiz L, et al. (2010) Increased Th1, Th17 and pro-fibrotic responses in hepatitis C-infected patients are down-regulated after 12 weeks of treatment with pegylated interferon plus ribavirin. Eur Cytokine Netw 21: 84–91.
[48]
Mlambo NC, Hylander B, Brauner A (1999) Increased levels of transforming growth factor beta 1 and basic fibroblast growth factor in patients on CAPD: a study during non-infected steady state and peritonitis. Inflammation 23: 131–139.
[49]
Skevaki CL, Psarras S, Volonaki E, Pratsinis H, Spyridaki IS, et al. (2012) Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features. Clin Transl Allergy 2: 14. doi: 10.1186/2045-7022-2-14
[50]
Tourdot S, Mathie S, Hussell T, Edwards L, Wang H, et al. (2008) Respiratory syncytial virus infection provokes airway remodelling in allergen-exposed mice in absence of prior allergen sensitization. Clin Exp Allergy 38: 1016–1024. doi: 10.1111/j.1365-2222.2008.02974.x
[51]
Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A, et al. (2002) A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol 161: 429–437. doi: 10.1016/s0002-9440(10)64199-5
[52]
Yurdakul P, Dalton J, Beattie L, Brown N, Erguven S, et al. (2011) Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis. Am J Pathol 179: 23–29. doi: 10.1016/j.ajpath.2011.03.009
[53]
Kaye PM, Svensson M, Ato M, Maroof A, Polley R, et al. (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201: 239–253. doi: 10.1111/j.0105-2896.2004.00188.x
[54]
Veress B, Omer A, Satir AA, El Hassan AM (1977) Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 33: 605–610.
[55]
Woodruff AW, Topley E, Knight R, Downie CG (1972) The anaemia of kala-azar. Br J Haematol 22: 319–329. doi: 10.1111/j.1365-2141.1972.tb05678.x
[56]
Reis LC, Ramos-Sanchez EM, Goto H (2013) The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages. Parasite Immunol 35: 239–244. doi: 10.1111/pim.12041
[57]
Vendrame CM, Carvalho MD, Rios FJ, Manuli ER, Petitto-Assis F, et al. (2007) Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro. Scand J Immunol 66: 287–296. doi: 10.1111/j.1365-3083.2007.01950.x
[58]
Yoshinouchi M, Miura M, Gaozza E, Li SW, Baserga R (1993) Basic fibroblast growth factor stimulates DNA synthesis in cells overexpressing the insulin-like growth factor-I receptor. Mol Endocrinol 7: 1161–1168. doi: 10.1210/mend.7.9.8247018
[59]
Kardami E, Pearson TW, Beecroft RP, Fandrich RR (1992) Identification of basic fibroblast growth factor-like proteins in African trypanosomes and Leishmania. Mol Biochem Parasitol 51: 171–181. doi: 10.1016/0166-6851(92)90067-t
[60]
Baxter RC (2000) Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 278: E967–976.
[61]
Biswas A, Bhattacharya A, Kar S, Das PK (2011) Expression of IL-10-triggered STAT3-dependent IL-4Ralpha is required for induction of arginase 1 in visceral leishmaniasis. Eur J Immunol 41: 992–1003. doi: 10.1002/eji.201040940
[62]
Wynes MW, Riches DW (2003) Induction of macrophage insulin-like growth factor-I expression by the Th2 cytokines IL-4 and IL-13. J Immunol 171: 3550–3559. doi: 10.4049/jimmunol.171.7.3550
[63]
Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, et al. (2012) An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med 18: 260–266. doi: 10.1038/nm.2628
[64]
Myers MG Jr, Grammer TC, Wang LM, Sun XJ, Pierce JH, et al. (1994) Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J Biol Chem 269: 28783–28789.
[65]
Heller NM, Qi X, Junttila IS, Shirey KA, Vogel SN, et al. (2008) Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Sci Signal 1: ra17. doi: 10.1126/scisignal.1164795
[66]
Kim JH, Park HH, Lee CE (2003) IGF-1 potentiation of IL-4-induced CD23/Fc(epsilon)RII expression in human B cells. Mol Cells 15: 307–312.
[67]
Patel BK, Wang LM, Lee CC, Taylor WG, Pierce JH, et al. (1996) Stat6 and Jak1 are common elements in platelet-derived growth factor and interleukin-4 signal transduction pathways in NIH 3T3 fibroblasts. J Biol Chem 271: 22175–22182. doi: 10.1074/jbc.271.36.22175
[68]
Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, Benito M, Nebreda AR, et al. (2007) Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal 19: 62–74. doi: 10.1016/j.cellsig.2006.05.032
[69]
Cheekatla SS, Aggarwal A, Naik S (2012) mTOR signaling pathway regulates the IL-12/IL-10 axis in Leishmania donovani infection. Med Microbiol Immunol 201: 37–46. doi: 10.1007/s00430-011-0202-5
[70]
Ruhland A, Kima PE (2009) Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with Leishmania amazonensis promastigotes. Exp Parasitol 122: 28–36. doi: 10.1016/j.exppara.2008.12.010
[71]
Ruhland A, Leal N, Kima PE (2007) Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol 9: 84–96. doi: 10.1111/j.1462-5822.2006.00769.x
[72]
Nandan D, Camargo de Oliveira C, Moeenrezakhanlou A, Lopez M, Silverman JM, et al. (2012) Myeloid cell IL-10 production in response to leishmania involves inactivation of glycogen synthase kinase-3beta downstream of phosphatidylinositol-3 kinase. J Immunol 188: 367–378. doi: 10.4049/jimmunol.1100076
[73]
Chaves J, Saif MW (2011) IGF system in cancer: from bench to clinic. Anticancer Drugs 22: 206–212. doi: 10.1097/cad.0b013e32834258a1
[74]
Daniele G, Corral J, Molife LR, de Bono JS (2012) FGF receptor inhibitors: role in cancer therapy. Curr Oncol Rep 14: 111–119. doi: 10.1007/s11912-012-0225-0
[75]
Dalton JE, Maroof A, Owens BM, Narang P, Johnson K, et al. (2010) Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest 120: 1204–1216. doi: 10.1172/jci41281
[76]
Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28: 378–384. doi: 10.1016/j.it.2007.07.004
[77]
Wilson ME, Jeronimo SM, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 38: 147–160. doi: 10.1016/j.micpath.2004.11.002
[78]
Sacks DL, Melby PC (2001) Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol Chapter 19: Unit 19 12.
[79]
van der Meide W, Guerra J, Schoone G, Farenhorst M, Coelho L, et al. (2008) Comparison between quantitative nucleic acid sequence-based amplification, real-time reverse transcriptase PCR, and real-time PCR for quantification of Leishmania parasites. J Clin Microbiol 46: 73–78. doi: 10.1128/jcm.01416-07