Moran GP, Coleman D, Sullivan D (2012) An introduction to the medically important Candida species. In: Calderone R, Clancy CJ, editors. Candida and Candidiasis. 2nd edition. Washington, D.C.: ASM Press. pp. 11–25.
[2]
Seider K, Heyken A, Luttich A, Miramon P, Hube B (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13: 392–400. doi: 10.1016/j.mib.2010.05.001
[3]
Lionakis MS, Netea MG (2013) Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog 9: e1003079. doi: 10.1371/journal.ppat.1003079
Gow NA, van de Veerdonk FL, Brown AJ, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10: 112–122. doi: 10.1038/nrmicro2711
[6]
Lionakis MS, Lim JK, Lee CC, Murphy PM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3: 180–199. doi: 10.1159/000321157
[7]
Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, et al. (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8: e1002578. doi: 10.1371/journal.ppat.1002578
[8]
Jimenez-Lopez C, Collette JR, Brothers KM, Shepardson KM, Cramer RA, et al. (2013) Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 12: 91–100. doi: 10.1128/ec.00290-12
[9]
Lewis LE, Bain JM, Okai B, Gow NA, Erwig LP (2013) Live-cell video microscopy of fungal pathogen phagocytosis. J Vis Exp doi:10.3791/50196.
[10]
McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, et al. (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78: 1650–1658. doi: 10.1128/iai.00001-10
[11]
Levitz SM (2010) Innate recognition of fungal cell walls. PLoS Pathog 6: e1000758. doi: 10.1371/journal.ppat.1000758
[12]
Joly S, Sutterwala FS (2010) Fungal pathogen recognition by the NLRP3 inflammasome. Virulence 1: 276–280. doi: 10.4161/viru.1.4.11482
[13]
Wellington M, Koselny K, Sutterwala FS, Krysan DJ (2014) Candida albicans Triggers NLRP3-Mediated Pyroptosis in Macrophages. Eukaryot Cell 13: 329–340. doi: 10.1128/ec.00336-13
[14]
Wellington M, Koselny K, Krysan DJ (2012) Candida albicans morphogenesis is not required for macrophage interleukin 1beta production. MBio 4: e00433–00412. doi: 10.1128/mbio.00433-12
[15]
Uwamahoro N, Verma-Gaur J, Shen HH, Qu Y, Lewis R, et al. (2014) The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio 5: e00003–00014. doi: 10.1128/mbio.00003-14
[16]
Bain JM, Lewis LE, Okai B, Quinn J, Gow NA, et al. (2012) Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol 49: 677–678. doi: 10.1016/j.fgb.2012.01.008
[17]
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107–120. doi: 10.1038/cdd.2011.96
[18]
Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T (2003) Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 278: 13086–13093. doi: 10.1074/jbc.m210680200
[19]
LaRock CN, Cookson BT (2013) Burning down the house: cellular actions during pyroptosis. PLoS Pathog 9: e1003793. doi: 10.1371/journal.ppat.1003793
[20]
Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243: 206–214. doi: 10.1111/j.1600-065x.2011.01044.x
[21]
Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13: 325–332. doi: 10.1038/ni.2231
[22]
Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121. doi: 10.1038/nature10558
[23]
Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, et al. (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459: 433–436. doi: 10.1038/nature07965
[24]
Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, et al. (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5: 487–497. doi: 10.1016/j.chom.2009.05.002
[25]
Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, et al. (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183: 3578–3581. doi: 10.4049/jimmunol.0901323
[26]
Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, et al. (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 7: e1002379. doi: 10.1371/journal.ppat.1002379
[27]
Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, et al. (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13: 246–254. doi: 10.1038/ni.2222
[28]
Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8: 1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x
van de Veerdonk FL, Joosten LA, Shaw PJ, Smeekens SP, Malireddi RK, et al. (2011) The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 41: 2260–2268. doi: 10.1002/eji.201041226
[31]
Netea MG, Stuyt RJ, Kim SH, Van der Meer JW, Kullberg BJ, et al. (2002) The role of endogenous interleukin (IL)-18, IL-12, IL-1beta, and tumor necrosis factor-alpha in the production of interferon-gamma induced by Candida albicans in human whole-blood cultures. J Infect Dis 185: 963–970. doi: 10.1086/339410
[32]
Netea MG, Vonk AG, van den Hoven M, Verschueren I, Joosten LA, et al. (2003) Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur J Immunol 33: 3409–3417. doi: 10.1002/eji.200323737