[1] | Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces: 1. Boundary layer equations for two-dimensional and axisymmetric flow. AIChE J 7: 26–28. doi: 10.1002/aic.690070108
|
[2] | Magyari E, Keller B (1999) Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D: Appl. Phys. 32: 577–585. doi: 10.1088/0022-3727/32/5/012
|
[3] | Cortell RB (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput.184: 864–873. doi: 10.1016/j.amc.2006.06.077
|
[4] | Cortell RB (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinear stretching surface. J. Mat. Processing Tech. 203: 176–183. doi: 10.1016/j.jmatprotec.2007.09.055
|
[5] | Alinejad J, Samarbakhsh S (2012) Viscous flow over nonlinearly stretching sheet with effects of viscous dissipation. J. Appl. Math. Article ID 587834, 10 pages doi:10.1155/2012/587834.
|
[6] | Shahzad A, Ali R, Khan M (2012) On the exact solution for axisymetric flow and heat transfer over a nonlinear radially stretching sheet. Chin. Phys. Lett. 29: 084705. doi: 10.1088/0256-307x/29/8/084705
|
[7] | Young I C (2011) Advances in Heat Transfer, Academic Press, Boston. 43: 291p.
|
[8] | Sisko AW (1958) The flow of lubricating greases, Industrial & Engineering Chemistry Research. 50: 1789–1792. doi: 10.1021/ie50588a042
|
[9] | Schowalter WR (1960) The application of boundary layer theory to power-law pseudo-plastic fluids: Similar solutions, AIChE J. 6: 24–28. doi: 10.1002/aic.690060105
|
[10] | Jadhav BP, Waghmode BB (1990) Heat transfer to non-Newtonian power-law fluid past a continuously moving porous flat plate with heat flux. Heat Mass Transf. 25: 377–380. doi: 10.1007/bf01811562
|
[11] | Howel TG, Jeng DR, Dewitt KJ (1997) Momentum and heat transfer on a continuous moving surface in a power-law fluid. Int. J. Heat Mass Transf. 40: 1853–1861. doi: 10.1016/s0017-9310(96)00247-5
|
[12] | Hassanien IA, Abdullah AA, Gorla RSR (1998) Flow and heat transfer in a power-law fluid over a non-isothermal stretching sheet. Math. Comput. Modell. 28: 105–116. doi: 10.1016/s0895-7177(98)00148-4
|
[13] | Able MS, Datti PS, Mahesha N (2009) Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source. Int. J. Heat Mass Transf. 52: 2902–2913. doi: 10.1016/j.ijheatmasstransfer.2008.08.042
|
[14] | Xu J (2005) Rheology of polymeric suspensions: Polymer nanocomposites and water borne coatings, Industrial and Engineering Chemistry Coating, Ph.D. Thesis, Ohio State University.
|
[15] | Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology, ELSEVIER, San Diego, USA, 22p.
|
[16] | Khan M, Munawar S, Abbasbandy S (2010) Steady flow and heat transfer of a Sisko fluid in annular pipe. Int. J. Heat Mass Transf. 53: 1290–1297. doi: 10.1016/j.ijheatmasstransfer.2009.12.037
|
[17] | Khan M, Shahzad A (2013) On boundary layer flow of Sisko fluid over stretching sheet. Quaestiones Mathematicae 36: 137–151. doi: 10.2989/16073606.2013.779971
|
[18] | Khan M, Shahzad A (2012) On axisymmetric flow of Sisko fluid over a radially stretching sheet. Int. J. Nonlinear Mech. 47: 999–1007. doi: 10.1016/j.ijnonlinmec.2012.06.003
|
[19] | Tadmor Z, Gogos CG (2006) Sec. ed. Principles of Polymer Processing. New Jersey, John Wiley & Sons, Inc. 184–185 p.
|
[20] | Dandapat BS, Singh SN, Singh RP (2004) Heat transfer due to permeable stretching wall in presence of transverse magnetic field. Arch. Mech. 56: 87–101.
|
[21] | Deshpande AP, Krishnan JM, Kumar S (2010) Rheology of Complex Fluids, Springer, London.
|
[22] | Berk Z (2008) Food Processing Engineering and Technology, Academic Press, New York.
|
[23] | Chhabra RP (2006) Sec. ed. Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press, Boca Raton, FL.
|
[24] | Chhabra RP, Richardson JF (2008) Sec. ed. Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann, Oxford, UK.
|
[25] | Chen CH (2008) Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-law stretched sheet with surface heat flux. Int. J. Therm. Sci. 47: 954–961. doi: 10.1016/j.ijthermalsci.2007.06.003
|