全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet

DOI: 10.1371/journal.pone.0100056

Full-Text   Cite this paper   Add to My Lib

Abstract:

The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

References

[1]  Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces: 1. Boundary layer equations for two-dimensional and axisymmetric flow. AIChE J 7: 26–28. doi: 10.1002/aic.690070108
[2]  Magyari E, Keller B (1999) Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D: Appl. Phys. 32: 577–585. doi: 10.1088/0022-3727/32/5/012
[3]  Cortell RB (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput.184: 864–873. doi: 10.1016/j.amc.2006.06.077
[4]  Cortell RB (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinear stretching surface. J. Mat. Processing Tech. 203: 176–183. doi: 10.1016/j.jmatprotec.2007.09.055
[5]  Alinejad J, Samarbakhsh S (2012) Viscous flow over nonlinearly stretching sheet with effects of viscous dissipation. J. Appl. Math. Article ID 587834, 10 pages doi:10.1155/2012/587834.
[6]  Shahzad A, Ali R, Khan M (2012) On the exact solution for axisymetric flow and heat transfer over a nonlinear radially stretching sheet. Chin. Phys. Lett. 29: 084705. doi: 10.1088/0256-307x/29/8/084705
[7]  Young I C (2011) Advances in Heat Transfer, Academic Press, Boston. 43: 291p.
[8]  Sisko AW (1958) The flow of lubricating greases, Industrial & Engineering Chemistry Research. 50: 1789–1792. doi: 10.1021/ie50588a042
[9]  Schowalter WR (1960) The application of boundary layer theory to power-law pseudo-plastic fluids: Similar solutions, AIChE J. 6: 24–28. doi: 10.1002/aic.690060105
[10]  Jadhav BP, Waghmode BB (1990) Heat transfer to non-Newtonian power-law fluid past a continuously moving porous flat plate with heat flux. Heat Mass Transf. 25: 377–380. doi: 10.1007/bf01811562
[11]  Howel TG, Jeng DR, Dewitt KJ (1997) Momentum and heat transfer on a continuous moving surface in a power-law fluid. Int. J. Heat Mass Transf. 40: 1853–1861. doi: 10.1016/s0017-9310(96)00247-5
[12]  Hassanien IA, Abdullah AA, Gorla RSR (1998) Flow and heat transfer in a power-law fluid over a non-isothermal stretching sheet. Math. Comput. Modell. 28: 105–116. doi: 10.1016/s0895-7177(98)00148-4
[13]  Able MS, Datti PS, Mahesha N (2009) Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source. Int. J. Heat Mass Transf. 52: 2902–2913. doi: 10.1016/j.ijheatmasstransfer.2008.08.042
[14]  Xu J (2005) Rheology of polymeric suspensions: Polymer nanocomposites and water borne coatings, Industrial and Engineering Chemistry Coating, Ph.D. Thesis, Ohio State University.
[15]  Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology, ELSEVIER, San Diego, USA, 22p.
[16]  Khan M, Munawar S, Abbasbandy S (2010) Steady flow and heat transfer of a Sisko fluid in annular pipe. Int. J. Heat Mass Transf. 53: 1290–1297. doi: 10.1016/j.ijheatmasstransfer.2009.12.037
[17]  Khan M, Shahzad A (2013) On boundary layer flow of Sisko fluid over stretching sheet. Quaestiones Mathematicae 36: 137–151. doi: 10.2989/16073606.2013.779971
[18]  Khan M, Shahzad A (2012) On axisymmetric flow of Sisko fluid over a radially stretching sheet. Int. J. Nonlinear Mech. 47: 999–1007. doi: 10.1016/j.ijnonlinmec.2012.06.003
[19]  Tadmor Z, Gogos CG (2006) Sec. ed. Principles of Polymer Processing. New Jersey, John Wiley & Sons, Inc. 184–185 p.
[20]  Dandapat BS, Singh SN, Singh RP (2004) Heat transfer due to permeable stretching wall in presence of transverse magnetic field. Arch. Mech. 56: 87–101.
[21]  Deshpande AP, Krishnan JM, Kumar S (2010) Rheology of Complex Fluids, Springer, London.
[22]  Berk Z (2008) Food Processing Engineering and Technology, Academic Press, New York.
[23]  Chhabra RP (2006) Sec. ed. Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press, Boca Raton, FL.
[24]  Chhabra RP, Richardson JF (2008) Sec. ed. Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann, Oxford, UK.
[25]  Chen CH (2008) Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-law stretched sheet with surface heat flux. Int. J. Therm. Sci. 47: 954–961. doi: 10.1016/j.ijthermalsci.2007.06.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133