The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
References
[1]
Brody LC, Biesecker BB (1998) Breast cancer susceptibility genes. BRCA1 and BRCA2. Medicine (Baltimore) 77: 208–226. doi: 10.1097/00005792-199805000-00006
[2]
Ford D, Easton DF, Stratton M, Narod S, Goldgar D, et al. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62: 676–689. doi: 10.1086/301749
[3]
Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71. doi: 10.1126/science.7545954
[4]
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, et al. (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96: 11364–11369. doi: 10.1073/pnas.96.20.11364
[5]
Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, et al. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. Faseb J 11: 68–76.
[6]
Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, et al. (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. The Journal of biological chemistry 276: 14537–14540. doi: 10.1074/jbc.c000881200
[7]
Chen A, Kleiman FE, Manley JL, Ouchi T, Pan ZQ (2002) Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. The Journal of biological chemistry 277: 22085–22092. doi: 10.1074/jbc.m201252200
[8]
Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, et al. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477: 179–184. doi: 10.1038/nature10371
[9]
Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, et al. (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Molecular and cellular biology 24: 8457–8466. doi: 10.1128/mcb.24.19.8457-8466.2004
[10]
Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, et al. (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. The Journal of biological chemistry 279: 31251–31258. doi: 10.1074/jbc.m405372200
[11]
Xu B, O'Donnell AH, Kim ST, Kastan MB (2002) Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer research 62: 4588–4591.
[12]
Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166. doi: 10.1126/science.286.5442.1162
[13]
Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Molecular and cellular biology 21: 3445–3450. doi: 10.1128/mcb.21.10.3445-3450.2001
[14]
Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30: 285–289. doi: 10.1038/ng837
[15]
Xu X, Weaver Z, Linke SP, Li C, Gotay J, et al. (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Molecular cell 3: 389–395. doi: 10.1016/s1097-2765(00)80466-9
[16]
Scully R, Anderson SF, Chao DM, Wei W, Ye L, et al. (1997) BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 94: 5605–5610. doi: 10.1073/pnas.94.11.5605
[17]
Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD (1998) BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet. 19: 254–256.
[18]
Monteiro AN, August A, Hanafusa H (1996) Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A 93: 13595–13599. doi: 10.1073/pnas.93.24.13595
[19]
Chapman MS, Verma IM (1996) Transcriptional activation by BRCA1. Nature 382: 678–679. doi: 10.1038/382678a0
[20]
Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, et al. (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111: 393–405. doi: 10.1016/s0092-8674(02)01052-8
[21]
Ganesan S, Silver DP, Drapkin R, Greenberg R, Feunteun J, et al. (2004) Association of BRCA1 with the inactive X chromosome and XIST RNA. Philos Trans R Soc Lond B Biol Sci 359: 123–128. doi: 10.1098/rstb.2003.1371
[22]
Turner JM, Aprelikova O, Xu X, Wang R, Kim S, et al. (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14: 2135–2142. doi: 10.1016/j.cub.2004.11.032
[23]
Silver DP, Dimitrov SD, Feunteun J, Gelman R, Drapkin R, et al. (2007) Further evidence for BRCA1 communication with the inactive X chromosome. Cell 128: 991–1002. doi: 10.1016/j.cell.2007.02.025
[24]
Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Molecular cell 4: 511–518. doi: 10.1016/s1097-2765(00)80202-6
[25]
Moynahan ME, Cui TY, Jasin M (2001) Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer research 61: 4842–4850.
[26]
Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108: 171–182. doi: 10.1016/s0092-8674(02)00615-3
[27]
Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nature reviews Molecular cell biology 11: 138–148. doi: 10.1038/nrm2831
[28]
Furuta S, Jiang X, Gu B, Cheng E, Chen PL, et al. (2005) Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci U S A 102: 9176–9181. doi: 10.1073/pnas.0503793102
[29]
Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, et al. (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105: 1680–1685. doi: 10.1073/pnas.0711613105
[30]
Burga LN, Tung NM, Troyan SL, Bostina M, Konstantinopoulos PA, et al. (2009) Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer research 69: 1273–1278. doi: 10.1158/0008-5472.can-08-2954
[31]
Lim E, Vaillant F, Wu D, Forrest NC, Pal B, et al. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature medicine 15: 907–913. doi: 10.1038/nm.2000
[32]
Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, et al. (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 20: 1480–1490. doi: 10.1200/jco.20.6.1480
[33]
Vallon-Christersson J, Cayanan C, Haraldsson K, Loman N, Bergthorsson JT, et al. (2001) Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Human molecular genetics 10: 353–360. doi: 10.1093/hmg/10.4.353
[34]
Lee MS, Green R, Marsillac SM, Coquelle N, Williams RS, et al. (2010) Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer research 70: 4880–4890. doi: 10.1158/0008-5472.can-09-4563
[35]
Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, et al. (2006) Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Human molecular genetics 15: 599–606. doi: 10.1093/hmg/ddi476
[36]
Chang S, Biswas K, Martin BK, Stauffer S, Sharan SK (2009) Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. The Journal of clinical investigation 119: 3160–3171. doi: 10.1172/jci39836
[37]
Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, et al. (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell stem cell 8: 149–163. doi: 10.1016/j.stem.2010.12.007
[38]
Kote-Jarai Z, Williams RD, Cattini N, Copeland M, Giddings I, et al. (2004) Gene expression profiling after radiation-induced DNA damage is strongly predictive of BRCA1 mutation carrier status. Clin Cancer Res 10: 958–963. doi: 10.1158/1078-0432.ccr-1067-3
[39]
Kote-Jarai Z, Matthews L, Osorio A, Shanley S, Giddings I, et al. (2006) Accurate prediction of BRCA1 and BRCA2 heterozygous genotype using expression profiling after induced DNA damage. Clin Cancer Res 12: 3896–3901. doi: 10.1158/1078-0432.ccr-05-2805
[40]
Bellacosa A, Godwin AK, Peri S, Devarajan K, Caretti E, et al. (2010) Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer prevention research 3: 48–61. doi: 10.1158/1940-6207.capr-09-0078
[41]
Salmon AY, Salmon-Divon M, Zahavi T, Barash Y, Levy-Drummer RS, et al. (2013) Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling. Cancer prevention research 6: 82–90. doi: 10.1158/1940-6207.capr-12-0105
[42]
Andrulis IL, Anton-Culver H, Beck J, Bove B, Boyd J, et al. (2002) Comparison of DNA- and RNA-based methods for detection of truncating BRCA1 mutations. Human mutation 20: 65–73. doi: 10.1002/humu.10097
[43]
Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99: 6567–6572. doi: 10.1073/pnas.082099299
[44]
Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18: 207–208. doi: 10.1093/bioinformatics/18.1.207
[45]
Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121. doi: 10.1073/pnas.091062498
[46]
Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, et al. (2005) A network-based analysis of systemic inflammation in humans. Nature 437: 1032–1037. doi: 10.1038/nature03985
[47]
Rieger KE, Chu G (2004) Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 32: 4786–4803. doi: 10.1093/nar/gkh783
[48]
Jen KY, Cheung VG (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13: 2092–2100. doi: 10.1101/gr.1240103
[49]
Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, et al. (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100: 655–669. doi: 10.1016/s0092-8674(00)80702-3
[50]
Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, et al. (2000) Brca1 required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 1: 77–82.
[51]
Kubista M, Rosner M, Kubista E, Bernaschek G, Hengstschlager M (2002) Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene 21: 4747–4756. doi: 10.1038/sj.onc.1205580
[52]
Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, et al. (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10: R10. doi: 10.1186/bcr1855
[53]
Smith SA, Easton DF, Evans DG, Ponder BA (1992) Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet 2: 128–131. doi: 10.1038/ng1092-128
[54]
Cornelis RS, Neuhausen SL, Johansson O, Arason A, Kelsell D, et al. (1995) High allele loss rates at 17q12-q21 in breast and ovarian tumors from BRCAl-linked families. The Breast Cancer Linkage Consortium. Genes Chromosomes Cancer 13: 203–210. doi: 10.1002/gcc.2870130310
[55]
Merajver SD, Pham TM, Caduff RF, Chen M, Poy EL, et al. (1995) Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet 9: 439–443. doi: 10.1038/ng0495-439
[56]
Neuhausen SL, Marshall CJ (1994) Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer research 54: 6069–6072.
[57]
King TA, Li W, Brogi E, Yee CJ, Gemignani ML, et al. (2007) Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann Surg Oncol 14: 2510–2518. doi: 10.1245/s10434-007-9372-1
[58]
Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, et al. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266: 120–122. doi: 10.1126/science.7939630
[59]
Sorlie T, Andersen TI, Bukholm I, Borresen-Dale AL (1998) Mutation screening of BRCA1 using PTT and LOH analysis at 17q21 in breast carcinomas from familial and non-familial cases. Breast Cancer Res Treat 48: 259–264. doi: 10.1023/a:1005953519972