Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.
References
[1]
Elton CS (1958) The ecology of invasions by animals and plants. Methuen: London.
[2]
Innes EA (1999) Emerging parasitic diseases, bioterrorism, and the New World order. Parasitol Today 15: 427–428. doi: 10.1016/s0169-4758(99)01529-x
[3]
Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287: 443–449. doi: 10.1126/science.287.5452.443
[4]
Fayer R (2000) Global change and emerging infectious diseases. J Parasitol 86: 1174–1181. doi: 10.1645/0022-3395(2000)086[1174:gcaeid]2.0.co;2
[5]
Britton JR (2013) Introduced parasites in food webs: new species, shifting structures? Trends Ecol Evol 28: 93–99. doi: 10.1016/j.tree.2012.08.020
[6]
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, et al. (2013) Global trends in emerging infectious diseases. Nature 451: 990–993. doi: 10.1038/nature06536
[7]
Mutinelli F (2011) The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments. Revue scientifique et technique de l'Office international des épizooties 30: 257–271.
[8]
Anonymous (1987) Varroa mites found in the United States. Am Bee J 127: 745–746.
[9]
Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92: 93–95. doi: 10.1016/j.jip.2006.02.005
[10]
Klee J, Besana AM, Genersch E, Gisder S, Nanettic A, et al. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96: 1–10. doi: 10.1016/j.jip.2007.02.014
[11]
Martín-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, et al. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73: 6331–6338. doi: 10.1128/aem.00270-07
[12]
Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and widespread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97: 186–188. doi: 10.1016/j.jip.2007.07.010
[13]
Williams GR, Shafer ABA, Rogers REL, Shutler D, Stewart DT (2008) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. J Invertebr Pathol 97: 189–192. doi: 10.1016/j.jip.2007.08.005
[14]
vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One 3: e4071. doi: 10.1371/journal.pone.0004071
[15]
vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103: S80–S95. doi: 10.1016/j.jip.2009.06.011
[16]
Williams GR, Tarpy DR, vanEngelsdorp D, Chauzat M-P, Cox-Foster DL, et al. (2010) Colony Collapse Disorder in context. BioEssays 32: 845–846. doi: 10.1002/bies.201000075
[17]
Calderone NW (2012) Insect pollinated crops, insect pollinators and US Agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7(5): e37235. doi: 10.1371/journal.pone.0037235
[18]
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, et al. (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339: 1608–1611. doi: 10.1126/science.1230200
[19]
Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature 280: 361–367. doi: 10.1038/280361a0
[20]
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287. doi: 10.1126/science.1146498
[21]
Guzmán-Novoa E, Eccles L, Calvete Y, McGowan J, Kelly PG, et al. (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41: 443–450. doi: 10.1051/apido/2009076
[22]
Bailey L, Ball BV, Perry JN (1981) The prevalence of viruses of honey bees in Britain. Annals Appl Biol 97: 109–118. doi: 10.1111/j.1744-7348.1981.tb02999.x
[23]
Bailey L, Ball BV, Perry JN (1983) Association of viruses with two protozoal pathogens of the honey bee. Annals Appl Biol 103: 13–20. doi: 10.1111/j.1744-7348.1983.tb02735.x
[24]
Ball BV, Bailey L (1997) Viruses. Honey bee pests, predators and diseases (ed. by R.A. Morse and K. Flottum K), pp. 11–31. AI Root: Medina, Ohio.
[25]
Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, et al. (2010) Iridovirus and microsporidian linked to honey bee colony decline. PLoS One 5: e13181. doi: 10.1371/journal.pone.0013181
[26]
Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, et al. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41: 332–352. doi: 10.1051/apido/2010014
[27]
Higes M, Meana A, Bartolomé C, Botías C, Martín-Hernández R (2013) Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environ Microbiol Reports 5: 17–29. doi: 10.1111/1758-2229.12024
[28]
Botías C, Martín-Hernández R, Barrios L, Meana A, Higes M (2013) Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet Res 44: 1–15. doi: 10.1186/1297-9716-44-25
[29]
Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PloS One 8: e58165. doi: 10.1371/journal.pone.0058165
[30]
Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, et al. (2013) Comprehensive bee pathogen screening in belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PloS One 8: e72443. doi: 10.1371/journal.pone.0072443
[31]
Williams GR, Shutler D, Little CM, Burgher-MacLellan KL, Rogers REL (2010) The microsporidian Nosema ceranae, the antibiotic Fumagilin-B, and western honey bee (Apis mellifera) colony strength. Apidologie 42: 15–22. doi: 10.1051/apido/2010030
[32]
Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45: 519–548. doi: 10.1146/annurev.ento.45.1.519
[33]
Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Nat Acad Sci USA 102: 7470–7475. doi: 10.1073/pnas.0501860102
[34]
Kevan PG, Hannan MA, Ostiguy N, Guzman-Novoa E (2006) A summary of the Varroa-virus disease complex in honey bees. Amer Bee J 694–697.
[35]
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, et al. (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336: 1304–1306. doi: 10.1126/science.1220941
[36]
Williams GR, Head K, Rogers REL, Shutler D, Burger-MacLellan K (2010) Parasitic mites and microsporidians in managed western honey bee colonies in Newfoundland and Labrador, Canada. Can Ent 142: 584–588. doi: 10.4039/n10-029
[37]
Delaplane KS, Van der Steen J, Guzman E (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research (ed. by V. Dietemann, J.D. Ellis, and P. Neumann). J Apicult Res 52: 1–12. doi: 10.3896/ibra/1.52.1.03
[38]
Williams GR, Rogers REL, Kalkstein AL, Taylor BA, Shutler D, et al. (2009) Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen. J Invertebr Pathol 101: 77–79. doi: 10.1016/j.jip.2009.01.004
[39]
Forsgren E, Fries I, de Miranda JR (2012) Adult honey bees (Apis mellifera) with deformed wings discovered in confirmed varroa-free colonies. J Apicult Res 51: 136–138. doi: 10.3896/ibra.1.51.1.17
[40]
Shimanuki H, Knox DA (2000) Diagnosis of honey bee diseases. Agriculture Handbook, Washington DC, USA.
[41]
Genersch E (2010) American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103: S10–S19. doi: 10.1016/j.jip.2009.06.015
[42]
Forsgren E (2010) European foulbrood in honey bees. J Invertebr Pathol 103: S5–S9. doi: 10.1016/j.jip.2009.06.016
[43]
Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, et al. (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 5: e14357. doi: 10.1371/journal.pone.0014357
[44]
Shen M, Yang X, Cox-Foster D, Cui L (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342: 141–149. doi: 10.1016/j.virol.2005.07.012
[45]
Palacios G, Hui J, Quan PL, Kalkstein A, Honkavuori KS, et al. (2008) Genetic analysis of Israel acute paralysis virus: Distinct clusters are circulating in the United States. J Virol 82: 6209–6217. doi: 10.1128/jvi.00251-08
[46]
Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Methods Molec Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[47]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[48]
Cantwell GE (1970) Standard methods for counting Nosema spores. Amer Bee J 110: 222–223.
[49]
Burgher-MacLellan KL, Williams GR, Shutler D, MacKenzie K, Rogers REL (2010) Optimization of duplex real-time PCR with melting curve analysis for detecting the microsporidian parasites Nosema apis and Nosema ceranae in Apis mellifera. Can Ent 142: 271–283. doi: 10.4039/n10-010
[50]
Currie R (2008) Economic threshold for Varroa on the Canadian Prairies. Available from http://www.capabees.com/2013/06/22/econo?mic-threshold-for-varroa-on-the-canadian?-prairies/ [accessed 10 April 2014].
[51]
Crawley MJ (2005) Statistics: An introduction using R. Wiley, West Sussex, England.
[52]
Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214. doi: 10.2307/1939574
[53]
Costa C, Tanner G, Lodesani M, Maistrello L, Neumann P (2011) Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. J Invertebr Pathol 108: 224–225. doi: 10.1016/j.jip.2011.08.012
[54]
Hedtke K, Jensen PM, Bruun A, Genersch E (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108: 167–173. doi: 10.1016/j.jip.2011.08.006
[55]
Martin SJ, Hardy J, Villalobos E, Martín-Hernández R, Nikaido S, et al. (2013) Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep doi: 10.1111/1758-2229.12052
[56]
Whitney H, Jennings D (2005) Import regulations for honey bees. Newfoundland and Labrador Agriculture, Animal Production Factsheet, Publication AP070 [online]. Available from http://www.nr.gov.nl.ca/nr/agrifoods/res?earch/honeybees05.pdf [accessed 22 November 2012].
[57]
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5: e9754. doi: 10.1371/journal.pone.0009754
[58]
Yue C, Genersch E (2005) RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J General Virol 86: 3419–3424. doi: 10.1099/vir.0.81401-0
[59]
Sumpter DJT, Martin SJ (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. J Anim Ecol 73: 51–63. doi: 10.1111/j.1365-2656.2004.00776.x
[60]
Shen MQ, Cui LW, Ostiguy N, Cox-Foster D (2005) Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J General Virol 86: 2281–2289. doi: 10.1099/vir.0.80824-0