全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Phosphomimetic Mutation of Cysteine String Protein-α Increases the Rate of Regulated Exocytosis by Modulating Fusion Pore Dynamics in PC12 Cells

DOI: 10.1371/journal.pone.0099180

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Cysteine string protein-α (CSPα) is a chaperone to ensure protein folding. Loss of CSPα function associates with many neurological diseases. However, its function in modulating regulated exocytosis remains elusive. Although cspα-knockouts exhibit impaired synaptic transmission, overexpression of CSPα in neuroendocrine cells inhibits secretion. These seemingly conflicting results lead to a hypothesis that CSPα may undergo a modification that switches its function in regulating neurotransmitter and hormone secretion. Previous studies implied that CSPα undergoes phosphorylation at Ser10 that may influence exocytosis by altering fusion pore dynamics. However, direct evidence is missing up to date. Methodology/Principal Findings Using amperometry, we investigated how phosphorylation at Ser10 of CSPα (CSPα-Ser10) modulates regulated exocytosis and if this modulation involves regulating a specific kinetic step of fusion pore dynamics. The real-time exocytosis of single vesicles was detected in PC12 cells overexpressing control vector, wild-type CSPα (WT), the CSPα phosphodeficient mutant (S10A), or the CSPα phosphomimetic mutants (S10D and S10E). The shapes of amperometric signals were used to distinguish the full-fusion events (i.e., prespike feet followed by spikes) and the kiss-and-run events (i.e., square-shaped flickers). We found that the secretion rate was significantly increased in cells overexpressing S10D or S10E compared to WT or S10A. Further analysis showed that overexpression of S10D or S10E prolonged fusion pore lifetime compared to WT or S10A. The fraction of kiss-and-run events was significantly lower but the frequency of full-fusion events was higher in cells overexpressing S10D or S10E compared to WT or S10A. Advanced kinetic analysis suggests that overexpression of S10D or S10E may stabilize open fusion pores mainly by inhibiting them from closing. Conclusions/Significance CSPα may modulate fusion pore dynamics in a phosphorylation-dependent manner. Therefore, through changing its phosphorylated state influenced by diverse cellular signalings, CSPα may have a great capacity to modulate the rate of regulated exocytosis.

References

[1]  Jackson MB, Chapman ER (2008) The fusion pores of Ca2+ -triggered exocytosis. Nat Struct Mol Biol 15: 684–689. doi: 10.1038/nsmb.1449
[2]  Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77: 615–641. doi: 10.1146/annurev.biochem.77.062005.101135
[3]  Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, et al. (2001) Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294: 1111–1115. doi: 10.1126/science.1064002
[4]  Wang P, Wang CT, Bai J, Jackson MB, Chapman ER (2003) Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J Biol Chem 278: 47030–47037. doi: 10.1074/jbc.m306728200
[5]  Bai J, Wang CT, Richards DA, Jackson MB, Chapman ER (2004) Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41: 929–942. doi: 10.1016/s0896-6273(04)00117-5
[6]  Wang CT, Bai J, Chang PY, Chapman ER, Jackson MB (2006) Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol 570: 295–307. doi: 10.1113/jphysiol.2005.097378
[7]  Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER (2009) Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138: 709–721. doi: 10.1016/j.cell.2009.05.049
[8]  Zhang Z, Hui E, Chapman ER, Jackson MB (2010) Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Mol Biol Cell 21: 2821–2831. doi: 10.1091/mbc.e10-04-0285
[9]  Pang ZP, Sudhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22: 496–505. doi: 10.1016/j.ceb.2010.05.001
[10]  Kochubey O, Lou X, Schneggenburger R (2011) Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci 34: 237–246. doi: 10.1016/j.tins.2011.02.006
[11]  Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, et al. (2012) Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 7: e47465. doi: 10.1371/journal.pone.0047465
[12]  Chamberlain LH, Burgoyne RD (2000) Cysteine-string protein: the chaperone at the synapse. J Neurochem 74: 1781–1789. doi: 10.1046/j.1471-4159.2000.0741781.x
[13]  Sharma M, Burre J, Bronk P, Zhang Y, Xu W, et al. (2012) CSPalpha knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J 31: 829–841. doi: 10.1038/emboj.2011.467
[14]  Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13: 30–39. doi: 10.1038/ncb2131
[15]  Evans GJ, Morgan A (2002) Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. Biochem J 364: 343–347. doi: 10.1042/bj20020123
[16]  Boal F, Laguerre M, Milochau A, Lang J, Scotti PA (2011) A charged prominence in the linker domain of the cysteine-string protein Cspalpha mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis. FASEB J 25: 132–143. doi: 10.1096/fj.09-152033
[17]  Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, et al. (1990) A cysteine-string protein is expressed in retina and brain of Drosophila. J Neurogenet 7: 15–29. doi: 10.3109/01677069009084150
[18]  Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, et al. (1994) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263: 981–982. doi: 10.1126/science.7906056
[19]  Chamberlain LH, Henry J, Burgoyne RD (1996) Cysteine string proteins are associated with chromaffin granules. J Biol Chem 271: 19514–19517. doi: 10.1074/jbc.271.32.19514
[20]  Brown H, Larsson O, Branstrom R, Yang SN, Leibiger B, et al. (1998) Cysteine string protein (CSP) is an insulin secretory granule-associated protein regulating beta-cell exocytosis. EMBO J 17: 5048–5058. doi: 10.1093/emboj/17.17.5048
[21]  Graham ME, Burgoyne RD (2000) Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J Neurosci 20: 1281–1289.
[22]  Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, et al. (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42: 237–251. doi: 10.1016/s0896-6273(04)00190-4
[23]  Umbach JA, Zinsmaier KE, Eberle KK, Buchner E, Benzer S, et al. (1994) Presynaptic dysfunction in Drosophila csp mutants. Neuron 13: 899–907. doi: 10.1016/0896-6273(94)90255-0
[24]  Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263: 977–980. doi: 10.1126/science.8310297
[25]  Zhang H, Kelley WL, Chamberlain LH, Burgoyne RD, Wollheim CB, et al. (1998) Cysteine-string proteins regulate exocytosis of insulin independent from transmembrane ion fluxes. FEBS Lett 437: 267–272. doi: 10.1016/s0014-5793(98)01233-2
[26]  Evans GJ, Wilkinson MC, Graham ME, Turner KM, Chamberlain LH, et al. (2001) Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. J Biol Chem 276: 47877–47885.
[27]  Evans GJ, Morgan A (2005) Phosphorylation of cysteine string protein in the brain: developmental, regional and synaptic specificity. Eur J Neurosci 21: 2671–2680. doi: 10.1111/j.1460-9568.2005.04118.x
[28]  Evans GJ, Barclay JW, Prescott GR, Jo SR, Burgoyne RD, et al. (2006) Protein kinase B/Akt is a novel cysteine string protein kinase that regulates exocytosis release kinetics and quantal size. J Biol Chem 281: 1564–1572. doi: 10.1074/jbc.m503628200
[29]  Zhang YQ, Henderson MX, Colangelo CM, Ginsberg SD, Bruce C, et al. (2012) Identification of CSPalpha clients reveals a role in dynamin 1 regulation. Neuron 74: 136–150. doi: 10.1016/j.neuron.2012.01.029
[30]  Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356: 60–63. doi: 10.1038/356060a0
[31]  Alvarez de Toledo G, Fernandez-Chacon ZL, Fernandez JM (1993) Release of secretory products during transient vesicle fusion. Nature 363: 554–558. doi: 10.1038/363554a0
[32]  Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, et al. (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389: 509–512. doi: 10.1038/39081
[33]  Ales E, Tabares L, Poyato JM, Valero V, Lindau M, et al. (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nature Cell Biology 1: 40–44. doi: 10.1038/9012
[34]  Dernick G, Alvarez de Toledo G, Lindau M (2003) Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat Cell Biol 5: 358–362. doi: 10.1038/ncb956
[35]  Wang CT, Lu JC, Bai J, Chang PY, Martin TF, et al. (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424: 943–947. doi: 10.1038/nature01857
[36]  Zhang Z, Jackson MB (2008) Temperature dependence of fusion kinetics and fusion pores in Ca2+-triggered exocytosis from PC12 cells. J Gen Physiol 131: 117–124. doi: 10.1085/jgp.200709891
[37]  Zhang Z, Hui E, Chapman ER, Jackson MB (2009) Phosphatidylserine regulation of Ca2+-triggered exocytosis and fusion pores in PC12 cells. Mol Biol Cell 20: 5086–5095. doi: 10.1091/mbc.e09-08-0691
[38]  Segovia M, Ales E, Montes MA, Bonifas I, Jemal I, et al. (2010) Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A 107: 19032–19037. doi: 10.1073/pnas.1014070107
[39]  Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, et al. (2011) Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 22: 2324–2336. doi: 10.1091/mbc.e11-02-0159
[40]  Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, et al. (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cell. Proc Natl Acad Sci USA 88: 10754–10758. doi: 10.1073/pnas.88.23.10754
[41]  Bruns D, Jahn R (1995) Real-time measurement of transmitter release from single synaptic vesicles. Nature 377: 62–65. doi: 10.1038/377062a0
[42]  Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicle in bovine adrenal chromaffin cells. Biophysical Journal 70: 1543–1552. doi: 10.1016/s0006-3495(96)79718-7
[43]  Fulop T, Smith C (2007) Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells. J Neurosci Methods 166: 195–202. doi: 10.1016/j.jneumeth.2007.07.004
[44]  Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond B Biol Sci 300: 1–59. doi: 10.1098/rstb.1982.0156
[45]  Jackson MB (1992) Ion channels: Single-channel analysis. Meth Enzymol 207: 729–746. doi: 10.1016/0076-6879(92)07053-q
[46]  Colquhoun D, Hawkes AG (1995) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakman B, Neher E, editors. Single-Channel Recording. 2nd ed. New York: Plenum Press. pp. 397–482.
[47]  Han X, Jackson MB (2006) Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis. J Cell Biol 172: 281–293. doi: 10.1083/jcb.200510012
[48]  Chamberlain LH, Burgoyne RD (1998) Cysteine string protein functions directly in regulated exocytosis. Mol Biol Cell 9: 2259–2267. doi: 10.1091/mbc.9.8.2259
[49]  Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304: 289–292. doi: 10.1126/science.1095801
[50]  Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, et al. (2008) Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 19: 5093–5103. doi: 10.1091/mbc.e08-03-0235
[51]  Zhu D, Zhou W, Liang T, Yang F, Zhang RY, et al. (2007) Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. Biochem Biophys Res Commun 361: 922–927. doi: 10.1016/j.bbrc.2007.07.083
[52]  Prescott GR, Jenkins RE, Walsh CM, Morgan A (2008) Phosphorylation of cysteine string protein on Serine 10 triggers 14-3-3 protein binding. Biochem Biophys Res Commun 377: 809–814. doi: 10.1016/j.bbrc.2008.10.069
[53]  Colliver TL, Hess EJ, Pothos EN, Sulzer D, Ewing AG (2000) Quantitative and statistical analysis of the shape of amperometric spikes recorded from two populations of cells. J Neurochem 74: 1086–1097. doi: 10.1046/j.1471-4159.2000.741086.x
[54]  Sorensen JB, Fernandez-Chacon R, Sudhof TC, Neher E (2003) Examining synaptotagmin 1 function in dense core vesicle exocytosis under direct control of Ca2+. J Gen Physiol 122: 265–276. doi: 10.1085/jgp.200308855
[55]  Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, et al. (2006) Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26: 12807–12815. doi: 10.1523/jneurosci.3238-06.2006
[56]  Dunn TA, Feller MB (2008) Imaging second messenger dynamics in developing neural circuits. Dev Neurobiol 68: 835–844. doi: 10.1002/dneu.20619
[57]  Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437: 569–573. doi: 10.1038/nature04140
[58]  Kunkel MT, Ni Q, Tsien RY, Zhang J, Newton AC (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280: 5581–5587. doi: 10.1074/jbc.m411534200
[59]  Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123: 383–396. doi: 10.1016/j.cell.2005.09.028
[60]  Schmitz F, Tabares L, Khimich D, Strenzke N, de la Villa-Polo P, et al. (2006) CSPalpha-deficiency causes massive and rapid photoreceptor degeneration. Proc Natl Acad Sci U S A 103: 2926–2931. doi: 10.1073/pnas.0510060103
[61]  Cormack B (1994) Introduction of a point mutation by sequential PCR steps. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al., editors. Current Protocols in Molecular Biology. New York: John Wiley & Sons, Inc. pp. 8.5.7–8.5.9.
[62]  Hay JC, Martin TFJ (1992) Resolution of regulated secretion into sequential MgATP-dependent and Calcium-dependent stages mediated by distinct cytosolic proteins. The Journal of Cell Biology 119: 139–151. doi: 10.1083/jcb.119.1.139
[63]  Chow RH, von Ruden L (1995) Electrochemical detection of secretion from single cells. In: Sakman B, Neher E, editors. Single-channel recording. 2nd ed. New York: Plenum Press. pp. 245–275.
[64]  Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E (1998) Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophysical journal 74. doi: 10.1016/s0006-3495(98)77917-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133