全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

DOI: 10.1371/journal.pone.0099585

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering.

References

[1]  Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25: 3829–3835. doi: 10.1016/j.biomaterials.2003.10.016
[2]  Zaidman N, Bosnakovski D (2012) Advancing with ceramic biocomposites for bone graft implants. Recent Patents on Regenerative Medicine 2: 65–72. doi: 10.2174/2210297311202010065
[3]  Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, et al. (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47: 1–4. doi: 10.1016/j.ijbiomac.2010.03.015
[4]  Barbieri D, Yuan H, Luo X, Farè S, Grijpma DW, et al. (2013) Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomater 9. doi: 10.1016/j.actbio.2013.07.026
[5]  Cao Z, Wen J, Yao J, Chen X, Ni Y, et al. (2013) Facile fabrication of the porous 3-dimensional regenerated silk fibroin scaffolds. Mater Sci Eng C-Mater Biol Appl 33: 3522–3529. doi: 10.1016/j.msec.2013.04.045
[6]  Qi R, Guo R, Shen M, Cao X, Zhang L, et al. (2010) Electrospun poly (lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem 20: 10622–10629. doi: 10.1039/c0jm01328e
[7]  Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R (2013) Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog Polym Sci 38. doi: 10.1016/j.progpolymsci.2013.05.005
[8]  Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc, Dalton Trans 97–108. doi: 10.1039/b007852m
[9]  Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31: 1465–1485. doi: 10.1016/j.biomaterials.2009.11.050
[10]  Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32: 2757–2774. doi: 10.1016/j.biomaterials.2011.01.004
[11]  Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, et al. (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31: 3949–3956. doi: 10.1016/j.biomaterials.2010.01.121
[12]  Wu C, Fan W, Chang J (2013) Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J Mater Chem B 1: 2710–2718. doi: 10.1039/c3tb20275e
[13]  Rossi AL, Barreto IC, Maciel WQ, Rosa FP, Rocha-Le?o MH, et al. (2012) Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite. Bone 50: 301–310. doi: 10.1016/j.bone.2011.10.022
[14]  Kumar A, Webster TJ, Biswas K, Basu B (2013) Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite-titanium biocomposites. J Biomed Mater Res Part A 101: 2925–2938. doi: 10.1002/jbm.a.34603
[15]  Magallanes-Perdomo M, De Aza AH, Mateus AY, Teixeira S, Monteiro FJ, et al. (2013) In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics. Acta Biomater 6: 2254–2263. doi: 10.1016/j.actbio.2009.12.027
[16]  Chung C-J, Long H-Y (2011) Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomater 7: 4081–4087. doi: 10.1016/j.actbio.2011.07.004
[17]  Huang J, Best SM, Bonfield W, Buckland T (2011) Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomater 6: 241–249. doi: 10.1016/j.actbio.2009.06.032
[18]  Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Part A 5: 117–141. doi: 10.1002/jbm.820050611
[19]  Wu C-T, Chang J (2013) Silicate bioceramics for bone tissue regeneration. J Inorg Mater 28: 29–39. doi: 10.3724/sp.j.1077.2013.12241
[20]  Wu C, Han P, Xu M, Zhang X, Zhou Y, et al. (2013) Nagelschmidtite bioceramics with osteostimulation properties: material chemistry activating osteogenic genes and WNT signalling pathway of human bone marrow stromal cells. J Mater Chem B 1: 876–885. doi: 10.1039/c2tb00391k
[21]  Huang Y, Jin X, Zhang X, Sun H, Tu J, et al. (2009) In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30: 5041–5048. doi: 10.1016/j.biomaterials.2009.05.077
[22]  Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, et al. (2000) Bioglass? 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcified Tissue International 67: 321–329. doi: 10.1007/s002230001134
[23]  Loty C, Sautier JM, Tan MT, Oboeuf M, Jallot E, et al. (2001) Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissue formation. Journal of Bone and Mineral Research 16: 231–239. doi: 10.1359/jbmr.2001.16.2.231
[24]  Wang S, Zheng F, Huang Y, Fang Y, SHen M, et al. (2012) Encapsulation of amoxicillin within laponite-doped poly(lactic-co-glycolic acid) nanofibers: preparation, characterization and antibacterial activity. ACS Appl Mater Interfaces 4: 6393–6401. doi: 10.1021/am302130b
[25]  Wang S, Wu Y, Guo R, Huang Y, Wen S, et al. (2013) Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 29: 5030–5036. doi: 10.1021/la4001363
[26]  Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH (2008) Itraconazole-laponite: kinetics and mechanism of drug release. Appl Clay Sci 40: 99–107. doi: 10.1016/j.clay.2007.09.002
[27]  Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48: 291–295. doi: 10.1016/j.clay.2010.01.007
[28]  Wang S, Castro R, An X, Song C, Luo Y, et al. (2012) Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22: 23357–23367. doi: 10.1039/c2jm34249a
[29]  Jabbari-Farouji S, Tanaka H, Wegdam GH, Bonn D (2008) Multiple nonergodic disordered states in Laponite suspensions:a phase diagram. Phys Rev E 78: 061405. doi: 10.1103/physreve.78.061405
[30]  Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL-MWCNTs by electrospinning. Mater Sci Eng C-Mater Biol Appl 30: 1014–1021. doi: 10.1016/j.msec.2010.05.003
[31]  Tas AC, Bhaduri SB (2004) Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res 19: 2742–2749. doi: 10.1557/jmr.2004.0349
[32]  Wu C, Chang J (2006) A novel akermanite bioceramic: preparation and characteristics. J Biomater Appl 21: 119–129. doi: 10.1177/0885328206057953
[33]  Wang QZ, Chen XG, Li ZX, Wang S, Liu CS, et al. (2008) Preparation and blood coagulation evaluation of chitosan microspheres. J Mater Sci - Mater Med 19: 1371–1377. doi: 10.1007/s10856-007-3243-y
[34]  Wu C, Chang J, Wang J, Ni S, Zhai W (2005) Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26: 2925–2931. doi: 10.1016/j.biomaterials.2004.09.019
[35]  Qi R, Cao X, Shen M, Guo R, Yu J, et al. (2012) Biocompatibility of electrospun halloysite nanotube-doped poly (lactic-co-glycolic acid) composite nanofibers. J Biomater Sci, Polym Ed 23: 299–313. doi: 10.1163/092050610x550340
[36]  Liao H, Qi R, Shen M, Cao X, Guo R, et al. (2011) Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloid Surf B-Biointerfaces 84: 528–535. doi: 10.1016/j.colsurfb.2011.02.010
[37]  Fernandes LF, Costa MA, Fernandes MH, Tomás H (2009) Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels. Connect Tissue Res 50: 336–346. doi: 10.1080/03008200902855909
[38]  da Silva HM, Mateescu M, Damia C, Champion E, Soares G, et al. (2010) Importance of dynamic culture for evaluating osteoblast activity on dense silicon-substituted hydroxyapatite. Colloid Surf B-Biointerfaces 80: 138–144. doi: 10.1016/j.colsurfb.2010.05.040
[39]  Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Rel Res 205: 299–308. doi: 10.1097/00003086-198604000-00036
[40]  Marcacci M, Kon E, Zaffagnini S, Giardino R, Rocca M, et al. (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64: 83–90. doi: 10.1007/s002239900583
[41]  Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GRD (2007) In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 13: 619–627. doi: 10.1089/ten.2006.0102

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133