Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
References
[1]
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419 doi:10.1126/science.1088547.
[2]
Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, et al. (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646–651 doi:10.1038/nature03556.
[3]
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, et al. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325: 433 doi:10.1126/science.1172447.
[4]
Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103: 16370–16375 doi:10.1073/pnas.0605633103.
[5]
Bozas A, Beumer KJ, Trautman JK, Carroll D (2009) Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 182: 641–651 doi:10.1534/genetics.109.101329.
[6]
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, et al. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27: 851–857 doi:10.1038/nbt.1562.
[7]
Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9: 805–807 doi:10.1038/nmeth.2030.
[8]
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–1512 doi:10.1126/science.1178811.
[9]
Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501 doi:10.1126/science.1178817.
[10]
Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, et al. (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29: 695–696 doi:10.1038/nbt.1940.
[11]
Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, et al. (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109: 17382–17387 doi:10.1073/pnas.1211446109.
[12]
Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, et al. (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29: 697–698 doi:10.1038/nbt.1934.
[13]
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, et al. (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29: 731–734 doi:10.1038/nbt.1927.
[14]
Cho SW, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31: 230–232 doi:10.1038/nbt.2507.
[15]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823–826 doi:10.1126/science.1232033.
[16]
Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, et al. (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods doi:10.1038/nmeth.2532.
[17]
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, et al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227–229 doi:10.1038/nbt.2501.
[18]
Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 95: 10570–10575. doi: 10.1073/pnas.95.18.10570
[19]
Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK (1998) Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A 95: 10564–10569. doi: 10.1073/pnas.95.18.10564
[20]
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, et al. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28: 3361–3369. doi: 10.1093/nar/28.17.3361
[21]
Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5: e1000376 doi:10.1371/journal.pgen.1000376.
[22]
Cornu TI, Cathomen T (2010) Quantification of zinc finger nuclease-associated toxicity. Methods Mol Biol Clifton NJ 649: 237–245 doi:_10.1007/978-1-60761-753-2_14.
[23]
Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011) Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 405: 630–641 doi:10.1016/j.jmb.2010.10.043.
[24]
Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, et al. (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41: e63 doi:10.1093/nar/gks1446.
[25]
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, et al. (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18: 529–536 doi:10.1038/nsmb.2019.
[26]
Druskovic M, Suput D, Milisav I (2006) Overexpression of caspase-9 triggers its activation and apoptosis in vitro. Croat Med J 47: 832–840.
[27]
Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89: 6861–6865. doi: 10.1073/pnas.89.15.6861
[28]
Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, et al. (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9: 376–385 doi:10.1038/ng0495-376.
[29]
Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, et al. (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87: 1317–1326. doi: 10.1016/s0092-8674(00)81826-7
[30]
Rohlmann A, Gotthardt M, Willnow TE, Hammer RE, Herz J (1996) Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol 14: 1562–1565 doi:10.1038/nbt1196-1562.
[31]
Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A 98: 11450–11455 doi:10.1073/pnas.201415498.
[32]
Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, et al. (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15: 110–116 doi:10.1038/nm.1863.
[33]
DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4: 1064–1072 doi:10.1038/nprot.2009.95.
[34]
Anton M, Graham FL (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J Virol 69: 4600–4606.
[35]
O'Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355. doi: 10.1126/science.1900642
[36]
Moldt B, Staunstrup NH, Jakobsen M, Yá?ez-Mu?oz RJ, Mikkelsen JG (2008) Genomic insertion of lentiviral DNA circles directed by the yeast Flp recombinase. BMC Biotechnol 8: 60 doi:10.1186/1472-6750-8-60.
[37]
Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, et al. (2001) Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 29: E40. doi: 10.1093/nar/29.7.e40
[38]
Kondo S, Takata Y, Nakano M, Saito I, Kanegae Y (2009) Activities of various FLP recombinases expressed by adenovirus vectors in mammalian cells. J Mol Biol 390: 221–230 doi:10.1016/j.jmb.2009.04.057.
[39]
Smith MCM, Brown WRA, McEwan AR, Rowley PA (2010) Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38: 388–394 doi:10.1042/BST0380388.
[40]
Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95: 5505–5510. doi: 10.1073/pnas.95.10.5505
[41]
Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97: 5995–6000 doi:10.1073/pnas.090527097.
Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21: 321–324 doi:10.1038/nbt787.
[44]
Nakayama G, Kawaguchi Y, Koga K, Kusakabe T (2006) Site-specific gene integration in cultured silkworm cells mediated by phiC31 integrase. Mol Genet Genomics MGG 275: 1–8 doi:10.1007/s00438-005-0026-3.
[45]
Ishikawa Y, Tanaka N, Murakami K, Uchiyama T, Kumaki S, et al. (2006) Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J Gene Med 8: 646–653 doi:10.1002/jgm.891.
[46]
Ma Q, Sheng H, Yan J, Cheng S, Huang Y, et al. (2006) Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun 345: 984–988 doi:10.1016/j.bbrc.2006.04.145.
[47]
Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, et al. (2008) Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells Dayt Ohio 26: 119–126 doi:10.1634/stemcells.2007-0283.
[48]
Lister JA (2011) Use of phage φC31 integrase as a tool for zebrafish genome manipulation. Methods Cell Biol 104: 195–208 doi:10.1016/B978-0-12-374814-0.00011-2.
[49]
Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166: 1775–1782. doi: 10.1534/genetics.166.4.1775
[50]
Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2: 975–979 doi:10.1038/nmeth814.
[51]
Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1: 1248–1257 doi:10.1038/nprot.2006.183.
[52]
Meredith JM, Underhill A, McArthur CC, Eggleston P (2013) Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase. PloS One 8: e59264 doi:10.1371/journal.pone.0059264.
[53]
Fish MP, Groth AC, Calos MP, Nusse R (2007) Creating transgenic Drosophila by microinjecting the site-specific phiC31 integrase mRNA and a transgene-containing donor plasmid. Nat Protoc 2: 2325–2331 doi:10.1038/nprot.2007.328.
[54]
Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317 doi:10.1073/pnas.0611511104.
[55]
Hollis RP, Stoll SM, Sclimenti CR, Lin J, Chen-Tsai Y, et al. (2003) Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol RBE 1: 79 doi:10.1186/1477-7827-1-79.
[56]
Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, et al. (2006) Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci U S A 103: 419–424 doi:10.1073/pnas.0504505102.
[57]
Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Calos MP, et al. (2003) PhiC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum Gene Ther 14: 923–928 doi:10.1089/104303403765701204.
[58]
Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, et al. (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20: 1124–1128 doi:10.1038/nbt753.
[59]
Bauer JW, Laimer M (2004) Gene therapy of epidermolysis bullosa. Expert Opin Biol Ther 4: 1435–1443 doi:10.1517/14712598.4.9.1435.
[60]
Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, et al. (2005) In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther J Am Soc Gene Ther 11: 399–408 doi:10.1016/j.ymthe.2004.11.001.
[61]
Chalberg TW, Genise HL, Vollrath D, Calos MP (2005) phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci 46: 2140–2146 doi:10.1167/iovs.04-1252.
[62]
Chavez CL, Keravala A, Chu JN, Farruggio AP, Cuéllar VE, et al. (2012) Long-term expression of human coagulation factor VIII in a tolerant mouse model using the φC31 integrase system. Hum Gene Ther 23: 390–398 doi:10.1089/hum.2011.110.
[63]
Keravala A, Portlock JL, Nash JA, Vitrant DG, Robbins PD, et al. (2006) PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints. J Gene Med 8: 1008–1017 doi:10.1002/jgm.928.
[64]
Portlock JL, Keravala A, Bertoni C, Lee S, Rando TA, et al. (2006) Long-term increase in mVEGF164 in mouse hindlimb muscle mediated by phage phiC31 integrase after nonviral DNA delivery. Hum Gene Ther 17: 871–876 doi:10.1089/hum.2006.17.871.
[65]
Keravala A, Chavez CL, Hu G, Woodard LE, Monahan PE, et al. (2011) Long-term phenotypic correction in factor IX knockout mice by using ΦC31 integrase-mediated gene therapy. Gene Ther 18: 842–848 doi:10.1038/gt.2011.31.
[66]
Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, et al. (2006) Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 357: 28–48 doi:10.1016/j.jmb.2005.11.098.
[67]
Wilson JH (2003) Pointing fingers at the limiting step in gene targeting. Nat Biotechnol 21: 759–760 doi:10.1038/nbt0703-759.
[68]
Ehrhardt A, Yant SR, Giering JC, Xu H, Engler JA, et al. (2007) Somatic integration from an adenoviral hybrid vector into a hot spot in mouse liver results in persistent transgene expression levels in vivo. Mol Ther J Am Soc Gene Ther 15: 146–156 doi:10.1038/sj.mt.6300011.
[69]
Robert M-A, Zeng Y, Raymond B, Desfossé L, Mairey E, et al. (2012) Efficacy and site-specificity of adenoviral vector integration mediated by the phage φC31 integrase. Hum Gene Ther Methods 23: 393–407 doi:10.1089/hgtb.2012.122.
[70]
Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, et al. (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80: 148–158. doi: 10.1016/j.ymgme.2003.08.016
[71]
Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, et al. (2001) Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther J Am Soc Gene Ther 3: 708–722 doi:10.1006/mthe.2001.0330.
[72]
Byrnes AP, Rusby JE, Wood MJ, Charlton HM (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66: 1015–1024. doi: 10.1016/0306-4522(95)00068-t
[73]
Kafri T, Bl?mer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17: 314–317 doi:10.1038/ng1197-314.
[74]
Naldini L, Bl?mer U, Gallay P, Ory D, Mulligan R, et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267. doi: 10.1126/science.272.5259.263
[75]
Cronin J, Zhang X-Y, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5: 387–398. doi: 10.2174/1566523054546224
[76]
Yá?ez-Mu?oz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, et al. (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12: 348–353 doi:10.1038/nm1365.
[77]
Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, et al. (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A 103: 17684–17689 doi:10.1073/pnas.0606197103.
[78]
Grandchamp N, Henriot D, Philippe S, Amar L, Ursulet S, et al. (2011) Influence of insulators on transgene expression from integrating and non-integrating lentiviral vectors. Genet Vaccines Ther 9: 1 doi:10.1186/1479-0556-9-1.
[79]
Vink CA, Gaspar HB, Gabriel R, Schmidt M, McIvor RS, et al. (2009) Sleeping beauty transposition from nonintegrating lentivirus. Mol Ther J Am Soc Gene Ther 17: 1197–1204 doi:10.1038/mt.2009.94.
[80]
Staunstrup NH, Moldt B, Mátés L, Villesen P, Jakobsen M, et al. (2009) Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther J Am Soc Gene Ther 17: 1205–1214 doi:10.1038/mt.2009.10.
[81]
Moldt B, Staunstrup NH, Jakobsen M, Yá?ez-Mu?oz RJ, Mikkelsen JG (2008) Genomic insertion of lentiviral DNA circles directed by the yeast Flp recombinase. BMC Biotechnol 8: 60 doi:10.1186/1472-6750-8-60.
[82]
Cornu TI, Cathomen T (2007) Targeted genome modifications using integrase-deficient lentiviral vectors. Mol Ther J Am Soc Gene Ther 15: 2107–2113 doi:10.1038/sj.mt.6300345.
[83]
Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L, et al. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25: 1298–1306 doi:10.1038/nbt1353.
[84]
Sarkis C, Philippe S, Mallet J, Serguera C (2008) Non-integrating lentiviral vectors. Curr Gene Ther 8: 430–437. doi: 10.2174/156652308786848012
[85]
Andreas S, Schwenk F, Küter-Luks B, Faust N, Kühn R (2002) Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 30: 2299–2306. doi: 10.1093/nar/30.11.2299
[86]
Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17: 1077–1094 doi:10.1089/hum.2006.17.1077.
[87]
Liu J, Skj?rringe T, Gjetting T, Jensen TG (2009) PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol 9: 31 doi:10.1186/1472-6750-9-31.
[88]
Liu J, Jeppesen I, Nielsen K, Jensen TG (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13: 1188–1190 doi:10.1038/sj.gt.3302789.
[89]
Gregory MA, Till R, Smith MCM (2003) Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol 185: 5320–5323. doi: 10.1128/jb.185.17.5320-5323.2003
[90]
Kolot M, Meroz A, Yagil E (2003) Site-specific recombination in human cells catalyzed by the wild-type integrase protein of coliphage HK022. Biotechnol Bioeng 84: 56–60 doi:10.1002/bit.10747.
Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, et al. (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3: 561–570 doi:10.1038/nmeth897.
[93]
Tay Y, Ho C, Droge P, Ghadessy FJ (2010) Selection of bacteriophage lambda integrases with altered recombination specificity by in vitro compartmentalization. Nucleic Acids Res 38: e25 doi:10.1093/nar/gkp1089.
[94]
Zayed H, Izsvák Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther J Am Soc Gene Ther 9: 292–304 doi:10.1016/j.ymthe.2003.11.024.
[95]
Santoro SW, Schultz PG (2002) Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A 99: 4185–4190 doi:10.1073/pnas.022039799.
[96]
Bolusani S, Ma C-H, Paek A, Konieczka JH, Jayaram M, et al. (2006) Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34: 5259–5269 doi:10.1093/nar/gkl548.
[97]
Guo J, Gaj T, Barbas III CF (2010) Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger Nucleases. J Mol Biol 400: 96–107 doi:10.1016/j.jmb.2010.04.060.
[98]
Sclimenti CR, Thyagarajan B, Calos MP (2001) Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res 29: 5044–5051. doi: 10.1093/nar/29.24.5044