Organophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (-)-Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (-)-phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (-)-phenserine pretreatment increased select neuroprotective genes and reversed a Homer1expression elevation induced by soman exposure. These studies suggest that (-)-phenserine warrants further evaluation as an OP nerve agent protective strategy.
Shih TM, Duniho SM, McDonough JH (2003) Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188: 69–80.
[3]
Romano JA Jr, King JM (2001) Psychological casualties resulting from chemical and biological weapons. Mil Med 166(12 Suppl): 21–22.
[4]
Okumura T, Takasu N, Ishimatsu S, Miyanoki S, Mitsuhashi A, et al. (1996) Report on 640 Victims of the Tokyo Subway Sarin Attack. Annals of Emergency Medicine 28: 129–136. doi: 10.1016/s0196-0644(96)70052-5
[5]
Nishiwaki Y, Maekawa K, Ogawa Y, Asukai N, Minami M, et al. (2001) Effects of sarin on the nervous system in rescue team staff members and police officers 3 years after the Tokyo subway sarin attack. Environ Health Perspect 109: 1169–1173. doi: 10.1289/ehp.011091169
[6]
Buckley NA, Karalliedde L, Dawson A, Senanayake N, Eddleston M (2004) Where is the evidence for treatments used in pesticide poisoning? Is clinical toxicology fiddling while the developing world burns? J Toxicol Clin Toxicol 42: 113–116. doi: 10.1081/clt-120028756
[7]
Miyaki K, Nishiwaki Y, Maekawa K, Ogawa Y, Asukai N, et al. (2005) Effects of sarin on the nervous system of subway workers seven years after the Tokyo subway sarin attack. J Occup Health 47: 299–304. doi: 10.1539/joh.47.299
[8]
Lallement G, Carpentier P, Collet A, Pernot-Marino I, Baubichon D, et al. (1991) Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 563: 234–240. doi: 10.1016/0006-8993(91)91539-d
[9]
McDonough JH, Shih TM Jr (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21: 559–579.
[10]
Carpentier P, Testylier G, Dorandeu F, Segebarth C, Montigon O, et al. (2008) Hyperosmolar treatment of soman-induced brain lesions in mice: evaluation of the effects through diffusion-weighted magnetic resonance imaging and through histology. Toxicology 253: 97–103. doi: 10.1016/j.tox.2008.08.016
[11]
Bajgar J (1991) The influence of inhibitors and other factors on cholinesterases. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove 34: 5–77.
[12]
Bajgar J (2004a) Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 38: 151–216. doi: 10.1016/s0065-2423(04)38006-6
[13]
Bajgar J (2005) Complex view on poisoning with nerve agents and organophosphates. Acta Medica (Hradec Kralove) 48: 3–21.
[14]
Bajgar J, Sevelova L, Krejcova G, Fusek J, Vachek J, et al. (2004a) Biochemical and behavioral effects of soman vapors in low concentrations. Inhal Toxicol 16: 497–507. doi: 10.1080/08958370490442430
[15]
McDonough JH, Shih TM Jr (1993) Pharmacological modulation of soman-induced seizures,. Neurosci Biobehav Rev 17: 203–215. doi: 10.1016/s0149-7634(05)80151-4
[16]
Shih TM, McDonough JH (2000) Organophosphorus nerve agents-induced seizures and efficacy of atropine sulfate as anticonvulsant treatment. Pharmacol Biochem Behav 64: 147–153. doi: 10.1016/s0091-3057(99)00114-8
[17]
Grunwald J, Raveh L, Doctor BP, Ashani Y (1994) Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci 54: 991–997. doi: 10.1016/0024-3205(94)00501-x
[18]
Eckert S, Eyer P, Melzer M, Thiermann H, Worek F (2008) Effects of oximes on rate of decarbamylation of human red blood cell AChE measured with two different methods. Biochem Pharmacol 75: 1561–1566. doi: 10.1016/j.bcp.2008.01.001
[19]
Alkondon M, Aracava Y, Pereira EF, Albuquerque EX (2009) A single in vivo application of cholinesterase inhibitors has neuron type-specific effects on nicotinic receptor activity in guinea pig hippocampus. J Pharmacol Exp Ther 328: 69–82. doi: 10.1124/jpet.108.146068
[20]
Schultz MK, Wright LK, Stone MF, Schwartz JE, Kelley NR, et al. (2012) The anticholinergic and antiglutamatergic drug caramiphen reduces seizure duration in soman-exposed rats: synergism with the benzodiazepine diazepam. Toxicol Appl Pharmacol 259: 376–386. doi: 10.1016/j.taap.2012.01.017
[21]
Greig NH, Pei XF, Soncrant TT, Ingram DK, Brossi A (1995) Phenserine and ring C hetero-analogues: drug candidates for the treatment of Alzheimer's disease. Med Res Rev 15: 3–31. doi: 10.1002/med.2610150103
[22]
Greig NH, De Micheli E, Holloway HW, Yu QS, Utsuki T, et al. (2000) The experimental Alzheimer drug phenserine: preclinical pharmacokinetics and pharmacodynamics. Acta Neurol Scand Suppl 176: 74–84. doi: 10.1034/j.1600-0404.2000.00311.x
[23]
Greig NH, Sambamurti K, Yu QS, Brossi A, Bruinsma GB, et al. (2005a) An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Curr Alzheimer Res 2: 281–290. doi: 10.2174/1567205054367829
[24]
Darreh-Shori T, Hosseini SM, Nordberg A (2014) Pharmacodynamics of cholinesterase inhibitors suggests add-on therapy with a low-dose carbamylating inhibitor in patients on long-term treatment with rapidly reversible inhibitors. J Alzheimers Dis 39: 423–440.
[25]
Shaw KT, Utsuki T, Rogers J, Yu QS, Sambamurti K, et al. (2001) Phenserine regulates translation of beta -amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc Natl Acad Sci U S A 98: 7605–7610. doi: 10.1073/pnas.131152998
[26]
Lahiri DK, Chen D, Maloney B, Holloway HW, Yu QS, et al. (2007) The experimental Alzheimer's disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Ther 320: 386–396. doi: 10.1124/jpet.106.112102
[27]
Mikkilineni S, Cantuti-Castelvetri I, Cahill CM, Balliedier A, Grieg NH, et al. (2012) The anticholinesterase phenserine and its enantiomer posiphen as 5′untranslated-region-directed translation blockers of the Parkinson's alpha synuclein expression. Parkinsons Dis Article ID 142372 13 doi:10.1155/2012/142372.
[28]
Maccecchini ML, Chang MY, Pan C, John V, Zetterberg H, et al. (2012) Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-β peptide and τ levels: target engagement, tolerability and pharmacokinetics in humans. J Neurol Neurosurg Psychiatry 83: 894–902. doi: 10.1136/jnnp-2012-302589
[29]
Lilja AM, Luo Y, Yu QS, R?jdner J, Li Y, et al. (2013a) Neurotrophic and neuroprotective actions of (-)- and (+)-phenserine, candidate drugs for Alzheimer's disease. PLoS One 8(1): e54887. doi: 10.1371/journal.pone.0054887
[30]
Greig NH, Ruckle J, Comer P, Brownell L, Holloway HW, et al. (2005b) Anticholinesterase and pharmacokinetic profile of phenserine in healthy elderly human subjects,. Curr Alzheimer Res 2: 483–492. doi: 10.2174/156720505774330564
[31]
Kadir A, Andreasen N, Almkvist O, Wall A, Forsberg A, et al. (2008) Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease. Ann Neurol 63: 621–631. doi: 10.1002/ana.21345
[32]
Winblad B, Giacobini E, Fr?lich L, Friedhoff LT, Bruinsma G, et al. (2010) Phenserine efficacy in Alzheimer's disease. J Alzheimers Dis 22: 1201–1208.
[33]
Pan H, Hu XZ, Jacobowitz DM, Chen C, McDonough J, et al. (2012) Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. Neurotoxicology 33: 1219–1229. doi: 10.1016/j.neuro.2012.07.001
[34]
Yu QS, Pei XF, Holloway HW, Greig NH, Brossi A (1997) Total syntheses and anticholinesterase activities of (3aS)-N(8)-norphysostigmine, (3aS)-N(8)-norphenserine, their antipodal isomers, and other N(8)-substituted analogues. J Med Chem 40: 2895–2901. doi: 10.1021/jm970210v
[35]
Shih T-M, Skovira JW, O'Donnell JC, McDonough JH (2010) In vivo reactivation by oximes of inhibited blood, brain and peripheral tissue cholinesterase activity following exposure to nerve agents in guinea pigs. Chemico-Biological Interactions 187: 207–214. doi: 10.1016/j.cbi.2010.03.006
[36]
Isaacs KR, Jacobowitz DM (1994) Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Exp Brain Res 99: 34–42. doi: 10.1007/bf00241410
[37]
Chen J, Pan H, Lipsky RH, Pérez-Gómez A, Cabrera-Garcia D, et al. (2011) Cellular and molecular responses of cultured neurons to stressful stimuli. Dose Response 9: 416–433. doi: 10.2203/dose-response.10-041.marini
[38]
U.S. Department of Health and Human Services, Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Guidance for Industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Available: www.fda.gov/downloads/Drugs/Guidances/UC?M078932.pdf. Accessed March 5, 2014.
[39]
Myers TM, Langston JL (2011) Diet composition exacerbates or attenuates soman toxicity in rats: Implied metabolic control of nerve agent toxicity. Neurotoxicology 32: 342–349. doi: 10.1016/j.neuro.2011.03.001
[40]
Brown MA, Brix KA (1998) Review of health consequences from high, intermediate, and low-level exposure to organophosphorus nerve agents. J Appl Toxicol 6: 393–408. doi: 10.1002/(sici)1099-1263(199811/12)18:6<393::aid-jat528>3.0.co;2-0
[41]
Joosen MJ, Jousma E, van den Boom TM, Kuijpers WC, Smit AB, et al. (2009) Long-term cognitive deficits accompanied by reduced neurogenesis after soman poisoning. NeuroToxicology 30: 72–80. doi: 10.1016/j.neuro.2008.11.010
[42]
Kassa J, Koupilova M, Herink J, Vachek J (2001) The long-term influence of low-level sarin exposure on behavioral and neurophysiological functions in rats. Acta Medica (Hradec Kralove) 44: 21–27.
[43]
McDonough JH Jr, Smith RF, Smith CD (1986) Behavioral correlates of soman-induced neuropathology: deficits in DRL acquisition. Toxicol Teratol 8: 179–187.
[44]
Morita H, Yanagisawa N, Nakajima T, Shimizu M, Hirabayashi H, et al. (1995) Sarin poisoning in Matsumoto, Japan. Lancet 346: 260–261. doi: 10.1016/s0140-6736(95)92170-2
[45]
Myhrer T, Andersen JM, Nguyen NH, Aas P (2005) Soman-induced convulsions in rats terminated with pharmacological agents after 45 min: neuropathology and cognitive performance. Neurotoxicology 26: 39–48. doi: 10.1016/j.neuro.2004.07.011
[46]
Fritsch B, Qashu F, Figueiredo TH, Aroniadou-Anderjaska V, Rogawski MA, et al. (2009) Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 163: 415–429. doi: 10.1016/j.neuroscience.2009.06.034
[47]
Dillman JF 3rd, Phillips CS, Kniffin DM, Tompkins CP, Hamilton TA, et al. (2009) Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman. Chem Res Toxicol 22: 633–638. doi: 10.1021/tx800466v
[48]
Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, et al. (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8): e1000604. doi: 10.1371/journal.pgen.1000604
[49]
Tan YW, Zhang SJ, Hoffmann T, Bading H (2012) Increasing levels of wild-type CREB up-regulates several activity-regulated inhibitor of death (AID) genes and promotes neuronal survival. BMC Neurosci 13: 48. doi: 10.1186/1471-2202-13-48
[50]
Ness JM, Harvey CR, Washington JD, Roth KA, Carroll SL, et al. (2008) Differential activation of c-fos and caspase-3 in hippocampal neuron subpopulations following neonatal hypoxia-ischemia. J Neurosci Res 86: 1115–1124. doi: 10.1002/jnr.21573
[51]
Bamforth SD, Bragan?a J, Eloranta JJ, Murdoch JN, Marques FI, et al. (2001) Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet 29: 469–474. doi: 10.3410/f.1002359.27757
[52]
Taylor DM, Moser R, Régulier E, Breuillaud L, Dixon M, et al. (2013) MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci 33: 2313–2325. doi: 10.1523/jneurosci.4965-11.2013
[53]
Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, et al. (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49: 67–79. doi: 10.1016/j.neuron.2005.11.027
[54]
Midorikawa R, Takei Y, Hirokawa N (2006) KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125: 371–383. doi: 10.1016/j.cell.2006.02.039
[55]
Ikushima S, Inukai T, Inaba T, Nimer SD, Cleveland JL, et al. (1997) Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A 94: 2609–2614. doi: 10.1073/pnas.94.6.2609
[56]
Junghans D, Chauvet S, Buhler E, Dudley K, Sykes T, et al. (2004) The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival. Development 131: 4425–4434. doi: 10.1242/dev.01313
[57]
de la Monte SM, Chiche J, von dem Bussche A, Sanyal S, Lahousse SA, et al. (2003) Nitric oxide synthase-3 overexpression causes apoptosis and impairs neuronal mitochondrial function: relevance to Alzheimer's-type neurodegeneration. Lab Invest 83: 287–298. doi: 10.1097/01.lab.0000056995.07053.c0
[58]
Khan S, Milot M, Lecompte-Collin J, Plamondon H (2004) Time-dependent changes in CRH concentrations and release in discrete brain regions following global ischemia: effects of MK-801 pretreatment. Brain Res 1016: 48–57. doi: 10.1016/j.brainres.2004.04.062
[59]
Wong ML, Loddick SA, Bongiorno PB, Gold PW, Rothwell NJ, et al. (1995) Focal cerebral ischemia induces CRH mRNA in rat cerebral cortex and amygdala. Neuroreport 6: 1785–1788. doi: 10.1097/00001756-199509000-00019
[60]
Wu X, Jin W, Liu X, Fu H, Gong P, et al. (2012) Cyclic AMP response element modulator-1 (CREM-1) involves in neuronal apoptosis after traumatic brain injury. J Mol Neurosci 47: 357–367. doi: 10.1007/s12031-012-9761-1
[61]
Shin JN, Piya S, Yun CW, Seol DW, Seo YW, et al. (2009) Homer1 regulates the susceptibility to TRAIL. Exp Cell Res 315: 2249–2255. doi: 10.1016/j.yexcr.2009.04.004
[62]
Morris MA, Ley K (2004) Trafficking of natural killer cells. Curr Mol Med 4: 431–438. doi: 10.2174/1566524043360609
[63]
Kuijpers M, van Gassen KL, de Graan PN, Gruol D (2010) Chronic exposure to the chemokine CCL3 enhances neuronal network activity in rat hippocampal cultures. J Neuroimmunol 229: 73–80. doi: 10.1016/j.jneuroim.2010.07.004
[64]
Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P (2001) Effects of huperzine used As pre-treatment against soman-induced seizures. NeuroToxicology 22: 29–37. doi: 10.1016/s0161-813x(00)00015-2
[65]
Wang Y, Wei Y, Oguntayo S, Doctor BP, Nambiar MP (2013) A combination of [+] and [?]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact 203: 120–124. doi: 10.1016/j.cbi.2012.10.016
[66]
Lallement G, Veyret J, Masqueliez C, Aubriot S, Burckhart MF, et al. (1997) Efficacy of huperzine in preventing soman-induced seizures, neuropathological changes and lethality. Fundam Clin Pharmacol 11: 387–394. doi: 10.1111/j.1472-8206.1997.tb00200.x
[67]
Albuquerque EX, Pereira EF, Aracava Y, Fawcett WP, Oliveira M, et al. (2006) Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc Natl Acad Sci U S A 103: 13220–13225. doi: 10.1073/pnas.0605370103
[68]
Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4: 131–138. doi: 10.1038/nrn1035
[69]
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, et al. (2005c) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A 102: 17213–17218. doi: 10.1073/pnas.0508575102
[70]
Yu QS, Reale M, Kamal MA, Holloway HW, Luo W, et al. (2013) Synthesis of the Alzheimer drug Posiphen into its primary metabolic products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their inhibition of amyloid precursor protein, α-Synuclein synthesis, interleukin-1β release, and cholinergic action. Antiinflamm Antiallergy Agents Med Chem 12: 117–128. doi: 10.2174/1871523011312020003
[71]
Becker RE, Greig NH (2013) Fire in the ashes: can failed Alzheimer's disease drugs succeed with second chances? Alzheimers Demen 9: 50–7. doi: 10.1016/j.jalz.2012.01.007
[72]
Lilja AM, R?jdner J, Mustafiz T, Thomé CM, Storelli E, et al. (2013b) Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels. PLoS One 8(3): e58752. doi: 10.1371/journal.pone.0058752
[73]
Marutle A, Ohmitsu M, Nilbratt M, Greig NH, Nordberg A, et al. (2007) Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc Natl Acad Sci U S A 104: 12506–12611. doi: 10.1073/pnas.0705346104
[74]
Sugaya K, Kwak YD, Ohmitsu O, Marutle A, Greig NH, et al. (2007) Practical issues in stem cell therapy for Alzheimer's disease. Curr Alzheimer Res 4: 370–377. doi: 10.2174/156720507781788936
[75]
Geerts H, Guillaumat PO, Grantham C, Bode W, Anciaux K, et al. (2005) Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits. Brain Res 1033: 186–193. doi: 10.1016/j.brainres.2004.11.042
[76]
Zhao Y, Yue P, Tao T, Chen QH (2007) Drug brain distribution following intranasal administration of Huperzine A in situ gel in rats. Acta Pharmacol Sin 28: 273–278. doi: 10.1111/j.1745-7254.2007.00486.x
[77]
Joosen MJ, Smit AB, van Helden HP (2011) Treatment efficacy in a soman-poisoned guinea pig model: added value of physostigmine? Arch Toxicol 85: 227–237. doi: 10.1007/s00204-010-0571-3
[78]
Cho Y, Kim WS, Hur GH, Ha YC (2012) Minimum effective drug concentrations of a transdermal patch system containing procyclidine and physostigmine for prophylaxis against soman poisoning in rhesus monkeys. Environ Toxicol Pharmacol 33: 1–8. doi: 10.1016/j.etap.2011.10.002
[79]
Asthana S, Greig NH, Hegedus L, Holloway HH, Raffaele KC, et al. (1995) Clinical pharmacokinetics of physostigmine in patients with Alzheimer's disease. Clin Pharmacol Ther 58: 299–309. doi: 10.1016/0009-9236(95)90246-5
[80]
Grahn H. Modeling of dispersion, deposition and evaporation from ground deposition in a stochastic particle model. Swedish Defence Research Agency Division of NBC Defence SE-901 82 UMEA Scientific Report, 2004. Available: http://www.acc.umu.se/~ha-grahn/exjobb.p?df. Accessed March 5, 2014.
[81]
al-Jafari AA1, Kamal MA, Greig NH, Alhomida AS, Perry ER (1998) Kinetics of human erythrocyte acetylcholinesterase inhibition by a novel derivative of physostigmine: phenserine. Biochem Biophys Res Commun 248: 180–185. doi: 10.1006/bbrc.1998.8931
[82]
Dolgin E (2013) Syrian gas attack reinforces need for better anti-sarin drugs. Nature Med 19: 1194–1195. doi: 10.1038/nm1013-1194
[83]
Yamasue H, Kasai K, Iwanami A, Ohtani T, Yamada H, et al. (2003) Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in post-traumatic stress disorder due to terrorism. Proc Natl Acad Sci U S A 100: 9039–9043. doi: 10.1073/pnas.1530467100
[84]
Yamasue H, Abe O, Kasai K, Suga M, Iwanami A, et al. (2007) Human Brain Structural Change Related to Acute Single Exposure to Sarin. Ann Neurol 61: 37–46. doi: 10.1002/ana.21024
[85]
Yokoyama K, Araki S, Murata K, Nishikitani M, Okumura T, et al. (1998) Neurobehavioral effects of Tokyo subway sarin poisoning in relation to posttraumatic stress disorder. Arch Environ Health 53: 249–256. doi: 10.1080/00039899809605705
[86]
Chen Y (2012) Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neuro Toxicol 33: 391–400. doi: 10.1016/j.neuro.2012.03.011
[87]
Dijkmans TF, van Hooijdonk LW, Schouten TG, Kamphorst JT, Fitzsimons CP, et al. (2009) Identification of new Nerve Growth Factor-responsive immediate-early genes. Brain Res 1249: 19–33. doi: 10.1016/j.brainres.2008.10.050
[88]
Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, et al. (2013) Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: From ferroptosis to stroke. Free Radic Biol Med 62: 26–36. doi: 10.1016/j.freeradbiomed.2013.01.026
[89]
Israelsson C, Bengtsson H, Kylberg A, Kullander K, Lewén A, et al. (2008) Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 25: 959–974. doi: 10.1089/neu.2008.0562
[90]
Johnson EA, Dao TL, Guignet MA, Geddes CE, Koemeter-Cox AI, et al. (2011) Increased expression of the chemokines CXCL1 and MIP-1α by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats. J Neuroinflammation 8: 41. doi: 10.1186/1742-2094-8-41