全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants

DOI: 10.1371/journal.pone.0100713

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

References

[1]  Roy B, Haupt LM, Griffiths LR (2013) Review: Alternative Splicing (AS) of Genes As An Approach for Generating Protein Complexity. Curr Genomics 14: 182–194. doi: 10.2174/1389202911314030004
[2]  Schaefer C, Meier A, Rost B, Bromberg Y (2012) SNPdbe: constructing an nsSNP functional impacts database. Bioinformatics 28: 601–602. doi: 10.1093/bioinformatics/btr705
[3]  Wu JR, Zeng R (2012) Molecular basis for population variation: from SNPs to SAPs. FEBS Lett 586: 2841–2845. doi: 10.1016/j.febslet.2012.07.036
[4]  Farley AR, Link AJ (2009) Identification and quantification of protein posttranslational modifications. Methods Enzymol 463: 725–763. doi: 10.1016/s0076-6879(09)63040-8
[5]  Basset P, Beuzard Y, Garel MC, Rosa J (1978) Isoelectric focusing of human hemoglobin: its application to screening, to the characterization of 70 variants, and to the study of modified fractions of normal hemoglobins. Blood 51: 971–982.
[6]  Kueppers F, Christopherson MJ (1978) Alpha1-antitrypsin: further genetic heterogeneity revealed by isoelectric focusing. Am J Hum Genet 30: 359–365.
[7]  Mifflin TE, Hortin G, Bruns DE (1986) Electrophoretic assays of amylase isoenzymes and isoforms. Clin Lab Med 6: 583–599.
[8]  Pettersson T, Carlstr?m A, J?rnvall H (1987) Different types of microheterogeneity of human thyroxine-binding prealbumin. Biochemistry 26: 4572–4583. doi: 10.1021/bi00388a061
[9]  Kim H, Eliuk S, Deshane J, Meleth S, Sanderson T, et al. (2007) 2D gel proteomics: an approach to study age-related differences in protein abundance or isoform complexity in biological samples. Methods Mol Biol 371: 349–391. doi: 10.1007/978-1-59745-361-5_24
[10]  Corzett TH, Fodor IK, Choi MW, Walsworth VL, Turteltaub KW, et al. (2010) Statistical analysis of variation in the human plasma proteome. J Biomed Biotechnol 2010: 258494. doi: 10.1155/2010/258494
[11]  Jackson D, Herath A, Swinton J, Bramwell D, Chopra R, et al. (2009) Considerations for powering a clinical proteomics study: Normal variability in the human plasma proteome. Proteomics Clin Appl 3: 394–407. doi: 10.1002/prca.200800066
[12]  Ignjatovic V, Lai C, Summerhayes R, Mathesius U, Tawfilis S, et al. (2011) Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One 6: e17213. doi: 10.1371/journal.pone.0017213
[13]  Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4: 817–821. doi: 10.1038/nmeth1097
[14]  Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4: 711. doi: 10.1161/circgenetics.110.957829
[15]  Stastna M, Van Eyk JE (2012) Analysis of protein isoforms: can we do it better? Proteomics 12: 2937–2948. doi: 10.1002/pmic.201200161
[16]  Wu J, Pungaliya P, Kraynov E, Bates B (2012) Identification and quantification of osteopontin splice variants in the plasma of lung cancer patients using immunoaffinity capture and targeted mass spectrometry. Biomarkers 17: 125–133. doi: 10.3109/1354750x.2011.643485
[17]  Végvári A, Sj?din K, Rezeli M, Malm J, Lilja H, et al. (2013) Identification of a novel proteoform of prostate specific antigen (SNP-L132I) in clinical samples by multiple reaction monitoring. Mol Cell Proteomics 12: 2761–2773. doi: 10.1074/mcp.m113.028365
[18]  Su ZD, Sun L, Yu DX, Li RX, Li HX, et al. (2011) Quantitative detection of single amino acid polymorphisms by targeted proteomics. J Mol Cell Biol 3: 309–315. doi: 10.1093/jmcb/mjr024
[19]  He K, Wen XY, Li AL, Li T, Wang J, et al. (2013) Serum peptidome variations in a healthy population: reference to identify cancer-specific peptides. PLoS One 8: e63724. doi: 10.1371/journal.pone.0063724
[20]  Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, et al. (2011) Analysis of intact protein isoforms by mass spectrometry. J Biol Chem 286: 25451–25458. doi: 10.1074/jbc.r111.239442
[21]  Nelson RW, Krone JR, Bieber AL, Williams P (1995) Mass spectrometric immunoassay. Anal Chem 67: 1153–1158. doi: 10.1021/ac00103a003
[22]  Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW (2004) High-throughput comprehensive analysis of human plasma proteins: a step toward population proteomics. Anal Chem 76: 1733–1737. doi: 10.1021/ac035105+
[23]  Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW (2005) Investigating diversity in human plasma proteins. Proc Natl Acad Sci U S A 102: 10852–10857. doi: 10.1073/pnas.0500426102
[24]  Nedelkov D, Phillips DA, Tubbs KA, Nelson RW (2007) Investigation of human protein variants and their frequency in the general population. Mol Cell Proteomics 6: 1183–1187. doi: 10.1074/mcp.m700023-mcp200
[25]  Trenchevska O, Kamcheva E, Nedelkov D (2010) Mass spectrometric immunoassay for quantitative determination of protein biomarker isoforms. J Proteome Res 9: 5969–5973. doi: 10.1021/pr1007587
[26]  Trenchevska O, Nedelkov D (2011) Targeted quantitative mass spectrometric immunoassay for human protein variants. Proteome Sci 9: 19. doi: 10.1186/1477-5956-9-19
[27]  Kiernan UA, Phillips DA, Trenchevska O, Nedelkov D (2011) Quantitative mass spectrometry evaluation of human retinol binding protein 4 and related variants. PLoS One 6: e17282. doi: 10.1371/journal.pone.0017282
[28]  Trenchevska O, Kamcheva E, Nedelkov D (2011) Mass spectrometric immunoassay for quantitative determination of transthyretin and its variants. Proteomics 11: 3633–3641. doi: 10.1002/pmic.201100023
[29]  Manicourt D, Brauman H, Orloff S (1978) Plasma and urinary levels of beta2 microglobulin in rheumatoid arthritis. Ann Rheum Dis 37: 328–332. doi: 10.1136/ard.37.4.328
[30]  Schardijn GH, Statius van Eps LW (1987) Beta 2-microglobulin: its significance in the evaluation of renal function. Kidney Int 32: 635–641. doi: 10.1038/ki.1987.255
[31]  Nissen MH, Plesner T, Rorth M (1984) Modification of beta 2-microglobulin in serum from patients with small cell carcinoma of the lung—correlation with the clinical course. Clin Chim Acta 141: 41–50. doi: 10.1016/0009-8981(84)90165-7
[32]  Plesner T, Wiik A (1979) Demonstration of electrophoretic heterogeneity of serum beta 2-microglobulin in systemic lupus erythematosus and rheumatoid arthritis: evidence against autoantibodies to beta 2-microglobulin. Scand J Immunol 9: 247–254. doi: 10.1111/j.1365-3083.1979.tb02728.x
[33]  Randers E, Erlandsen EJ (1999) Serum cystatin C as an endogenous marker of the renal function—a review. Clin Chem Lab Med 37: 389–395. doi: 10.1515/cclm.1999.064
[34]  Randers E, Kristensen JH, Erlandsen EJ, Danielsen H (1998) Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest 58: 585–592. doi: 10.1080/00365519850186210
[35]  Beetham R, Dawnay A, Landon J, Cattell WR (1985) A radioimmunoassay for retinol-binding protein in serum and urine. Clin Chem 31: 1364–1367.
[36]  Jaconi S, Rose K, Hughes GJ, Saurat JH, Siegenthaler G (1995) Characterization of two post-translationally processed forms of human serum retinol-binding protein: altered ratios in chronic renal failure. J Lipid Res 36: 1247–1253.
[37]  Saraiva MJ (2001) Transthyretin amyloidosis: a tale of weak interactions. FEBS Lett 498: 201–203. doi: 10.1016/s0014-5793(01)02480-2
[38]  Hou X, Aguilar MI, Small DH (2007) Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J 274: 1637–1650. doi: 10.1111/j.1742-4658.2007.05712.x
[39]  Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10: 160–184. doi: 10.3109/13506120308998998
[40]  Nissen MH, Roepstorff P, Thim L, Dunbar B, Fothergill JE (1990) Limited proteolysis of beta 2-microglobulin at Lys-58 by complement component C1s. Eur J Biochem 189: 423–429. doi: 10.1111/j.1432-1033.1990.tb15505.x
[41]  Grubb A, Lofberg H (1982) Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc Natl Acad Sci U S A 79: 3024–3027. doi: 10.1073/pnas.79.9.3024
[42]  Erlandsen EJ, Randers E, Kristensen JH (1998) Reference intervals for serum cystatin C and serum creatinine in adults. Clin Chem Lab Med 36: 393–397. doi: 10.1515/cclm.1998.067
[43]  Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47: 2025–2044. doi: 10.1172/jci105889
[44]  Myron Johnson A, Merlini G, Sheldon J, Ichihara K, Scientific Division Committee on Plasma Proteins (C-PP) ItFoCCaLMI (2007) Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition. Clin Chem Lab Med 45: 419–426. doi: 10.1515/cclm.2007.051
[45]  Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11: 49–79. doi: 10.1146/annurev-bioeng-061008-124934
[46]  Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, et al. (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3: 235–244. doi: 10.1021/pr034086h
[47]  Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, et al. (2012) Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 11: 3986–3995. doi: 10.1021/pr300014s
[48]  Petitclerc C (2004) Normality: the unreachable star? Clin Chem Lab Med 42: 698–701.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133