[1] | Roy B, Haupt LM, Griffiths LR (2013) Review: Alternative Splicing (AS) of Genes As An Approach for Generating Protein Complexity. Curr Genomics 14: 182–194. doi: 10.2174/1389202911314030004
|
[2] | Schaefer C, Meier A, Rost B, Bromberg Y (2012) SNPdbe: constructing an nsSNP functional impacts database. Bioinformatics 28: 601–602. doi: 10.1093/bioinformatics/btr705
|
[3] | Wu JR, Zeng R (2012) Molecular basis for population variation: from SNPs to SAPs. FEBS Lett 586: 2841–2845. doi: 10.1016/j.febslet.2012.07.036
|
[4] | Farley AR, Link AJ (2009) Identification and quantification of protein posttranslational modifications. Methods Enzymol 463: 725–763. doi: 10.1016/s0076-6879(09)63040-8
|
[5] | Basset P, Beuzard Y, Garel MC, Rosa J (1978) Isoelectric focusing of human hemoglobin: its application to screening, to the characterization of 70 variants, and to the study of modified fractions of normal hemoglobins. Blood 51: 971–982.
|
[6] | Kueppers F, Christopherson MJ (1978) Alpha1-antitrypsin: further genetic heterogeneity revealed by isoelectric focusing. Am J Hum Genet 30: 359–365.
|
[7] | Mifflin TE, Hortin G, Bruns DE (1986) Electrophoretic assays of amylase isoenzymes and isoforms. Clin Lab Med 6: 583–599.
|
[8] | Pettersson T, Carlstr?m A, J?rnvall H (1987) Different types of microheterogeneity of human thyroxine-binding prealbumin. Biochemistry 26: 4572–4583. doi: 10.1021/bi00388a061
|
[9] | Kim H, Eliuk S, Deshane J, Meleth S, Sanderson T, et al. (2007) 2D gel proteomics: an approach to study age-related differences in protein abundance or isoform complexity in biological samples. Methods Mol Biol 371: 349–391. doi: 10.1007/978-1-59745-361-5_24
|
[10] | Corzett TH, Fodor IK, Choi MW, Walsworth VL, Turteltaub KW, et al. (2010) Statistical analysis of variation in the human plasma proteome. J Biomed Biotechnol 2010: 258494. doi: 10.1155/2010/258494
|
[11] | Jackson D, Herath A, Swinton J, Bramwell D, Chopra R, et al. (2009) Considerations for powering a clinical proteomics study: Normal variability in the human plasma proteome. Proteomics Clin Appl 3: 394–407. doi: 10.1002/prca.200800066
|
[12] | Ignjatovic V, Lai C, Summerhayes R, Mathesius U, Tawfilis S, et al. (2011) Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One 6: e17213. doi: 10.1371/journal.pone.0017213
|
[13] | Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4: 817–821. doi: 10.1038/nmeth1097
|
[14] | Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4: 711. doi: 10.1161/circgenetics.110.957829
|
[15] | Stastna M, Van Eyk JE (2012) Analysis of protein isoforms: can we do it better? Proteomics 12: 2937–2948. doi: 10.1002/pmic.201200161
|
[16] | Wu J, Pungaliya P, Kraynov E, Bates B (2012) Identification and quantification of osteopontin splice variants in the plasma of lung cancer patients using immunoaffinity capture and targeted mass spectrometry. Biomarkers 17: 125–133. doi: 10.3109/1354750x.2011.643485
|
[17] | Végvári A, Sj?din K, Rezeli M, Malm J, Lilja H, et al. (2013) Identification of a novel proteoform of prostate specific antigen (SNP-L132I) in clinical samples by multiple reaction monitoring. Mol Cell Proteomics 12: 2761–2773. doi: 10.1074/mcp.m113.028365
|
[18] | Su ZD, Sun L, Yu DX, Li RX, Li HX, et al. (2011) Quantitative detection of single amino acid polymorphisms by targeted proteomics. J Mol Cell Biol 3: 309–315. doi: 10.1093/jmcb/mjr024
|
[19] | He K, Wen XY, Li AL, Li T, Wang J, et al. (2013) Serum peptidome variations in a healthy population: reference to identify cancer-specific peptides. PLoS One 8: e63724. doi: 10.1371/journal.pone.0063724
|
[20] | Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, et al. (2011) Analysis of intact protein isoforms by mass spectrometry. J Biol Chem 286: 25451–25458. doi: 10.1074/jbc.r111.239442
|
[21] | Nelson RW, Krone JR, Bieber AL, Williams P (1995) Mass spectrometric immunoassay. Anal Chem 67: 1153–1158. doi: 10.1021/ac00103a003
|
[22] | Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW (2004) High-throughput comprehensive analysis of human plasma proteins: a step toward population proteomics. Anal Chem 76: 1733–1737. doi: 10.1021/ac035105+
|
[23] | Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW (2005) Investigating diversity in human plasma proteins. Proc Natl Acad Sci U S A 102: 10852–10857. doi: 10.1073/pnas.0500426102
|
[24] | Nedelkov D, Phillips DA, Tubbs KA, Nelson RW (2007) Investigation of human protein variants and their frequency in the general population. Mol Cell Proteomics 6: 1183–1187. doi: 10.1074/mcp.m700023-mcp200
|
[25] | Trenchevska O, Kamcheva E, Nedelkov D (2010) Mass spectrometric immunoassay for quantitative determination of protein biomarker isoforms. J Proteome Res 9: 5969–5973. doi: 10.1021/pr1007587
|
[26] | Trenchevska O, Nedelkov D (2011) Targeted quantitative mass spectrometric immunoassay for human protein variants. Proteome Sci 9: 19. doi: 10.1186/1477-5956-9-19
|
[27] | Kiernan UA, Phillips DA, Trenchevska O, Nedelkov D (2011) Quantitative mass spectrometry evaluation of human retinol binding protein 4 and related variants. PLoS One 6: e17282. doi: 10.1371/journal.pone.0017282
|
[28] | Trenchevska O, Kamcheva E, Nedelkov D (2011) Mass spectrometric immunoassay for quantitative determination of transthyretin and its variants. Proteomics 11: 3633–3641. doi: 10.1002/pmic.201100023
|
[29] | Manicourt D, Brauman H, Orloff S (1978) Plasma and urinary levels of beta2 microglobulin in rheumatoid arthritis. Ann Rheum Dis 37: 328–332. doi: 10.1136/ard.37.4.328
|
[30] | Schardijn GH, Statius van Eps LW (1987) Beta 2-microglobulin: its significance in the evaluation of renal function. Kidney Int 32: 635–641. doi: 10.1038/ki.1987.255
|
[31] | Nissen MH, Plesner T, Rorth M (1984) Modification of beta 2-microglobulin in serum from patients with small cell carcinoma of the lung—correlation with the clinical course. Clin Chim Acta 141: 41–50. doi: 10.1016/0009-8981(84)90165-7
|
[32] | Plesner T, Wiik A (1979) Demonstration of electrophoretic heterogeneity of serum beta 2-microglobulin in systemic lupus erythematosus and rheumatoid arthritis: evidence against autoantibodies to beta 2-microglobulin. Scand J Immunol 9: 247–254. doi: 10.1111/j.1365-3083.1979.tb02728.x
|
[33] | Randers E, Erlandsen EJ (1999) Serum cystatin C as an endogenous marker of the renal function—a review. Clin Chem Lab Med 37: 389–395. doi: 10.1515/cclm.1999.064
|
[34] | Randers E, Kristensen JH, Erlandsen EJ, Danielsen H (1998) Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest 58: 585–592. doi: 10.1080/00365519850186210
|
[35] | Beetham R, Dawnay A, Landon J, Cattell WR (1985) A radioimmunoassay for retinol-binding protein in serum and urine. Clin Chem 31: 1364–1367.
|
[36] | Jaconi S, Rose K, Hughes GJ, Saurat JH, Siegenthaler G (1995) Characterization of two post-translationally processed forms of human serum retinol-binding protein: altered ratios in chronic renal failure. J Lipid Res 36: 1247–1253.
|
[37] | Saraiva MJ (2001) Transthyretin amyloidosis: a tale of weak interactions. FEBS Lett 498: 201–203. doi: 10.1016/s0014-5793(01)02480-2
|
[38] | Hou X, Aguilar MI, Small DH (2007) Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J 274: 1637–1650. doi: 10.1111/j.1742-4658.2007.05712.x
|
[39] | Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10: 160–184. doi: 10.3109/13506120308998998
|
[40] | Nissen MH, Roepstorff P, Thim L, Dunbar B, Fothergill JE (1990) Limited proteolysis of beta 2-microglobulin at Lys-58 by complement component C1s. Eur J Biochem 189: 423–429. doi: 10.1111/j.1432-1033.1990.tb15505.x
|
[41] | Grubb A, Lofberg H (1982) Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc Natl Acad Sci U S A 79: 3024–3027. doi: 10.1073/pnas.79.9.3024
|
[42] | Erlandsen EJ, Randers E, Kristensen JH (1998) Reference intervals for serum cystatin C and serum creatinine in adults. Clin Chem Lab Med 36: 393–397. doi: 10.1515/cclm.1998.067
|
[43] | Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47: 2025–2044. doi: 10.1172/jci105889
|
[44] | Myron Johnson A, Merlini G, Sheldon J, Ichihara K, Scientific Division Committee on Plasma Proteins (C-PP) ItFoCCaLMI (2007) Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition. Clin Chem Lab Med 45: 419–426. doi: 10.1515/cclm.2007.051
|
[45] | Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11: 49–79. doi: 10.1146/annurev-bioeng-061008-124934
|
[46] | Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, et al. (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3: 235–244. doi: 10.1021/pr034086h
|
[47] | Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, et al. (2012) Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 11: 3986–3995. doi: 10.1021/pr300014s
|
[48] | Petitclerc C (2004) Normality: the unreachable star? Clin Chem Lab Med 42: 698–701.
|