[1] | Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31: 877–902. doi: 10.1016/j.biotechadv.2013.04.002
|
[2] | Gao C, Ma CQ, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29: 930–939. doi: 10.1016/j.biotechadv.2011.07.022
|
[3] | Ding S, Tan T (2006) -Lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41: 1451–1454. doi: 10.1016/j.procbio.2006.01.014
|
[4] | Yang LB, Zhan XB, Zheng ZY, Wu JR, Gao MJ, et al. (2014) A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol 151: 120–127. doi: 10.1016/j.biortech.2013.10.031
|
[5] | Ge XY, Yuan J, Qin H, Zhang WG (2011) Improvement of -lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Appl Microbiol Biotechnol 89: 73–78. doi: 10.1007/s00253-010-2868-9
|
[6] | Romero-Garcia S, Hernández-Bustos C, Merino E, Gosset G, Martinez A (2009) Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb Cell Fact 8: 23. doi: 10.1186/1475-2859-8-23
|
[7] | Yu L, Pei XL, Lei T, Wang YH, Feng Y (2008) Genome shuffling enhanced -lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134: 154–159. doi: 10.1016/j.jbiotec.2008.01.008
|
[8] | Zhou X, Ye L, Wu JC (2013) Efficient production of -lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Appl Microbiol Biotechnol 97: 4309–4314. doi: 10.1007/s00253-013-4710-7
|
[9] | Ronsch H, Kramer R, Morbach S (2003) Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20-22B. J Biotechnol 104: 87–97. doi: 10.1016/s0168-1656(03)00166-4
|
[10] | Sashihara T, Dan M, Kimura H, Matsusaki H, Sonomoto K, et al. (2001) The effect of osmotic stress on the production of nukacin ISK-1 from Staphylococcus warneri ISK-1. Appl Microbiol Biotechnol 56: 496–501. doi: 10.1007/s002530100669
|
[11] | Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60: 1519–1524.
|
[12] | Zou H, Wu Z, Xian M, Liu H, Cheng T, et al. (2013) Not only osmoprotectant: Betaine increased lactate dehydrogenase activity and -lactate production in Lactobacilli. Bioresour Technol 148: 591–595. doi: 10.1016/j.biortech.2013.08.105
|
[13] | Sutherland L, Cairney J, Elmore M, Booth I, Higgins C (1986) Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. J Bacteriol 168: 805–814.
|
[14] | Boniolo FS, Rodrigues RC, Delatorre EO, Silveira MM, Flores VM, et al. (2009) Glycine betaine enhances growth of nitrogen-fixing bacteria Gluconacetobacter diazotrophicus PAL5 under saline stress conditions. Curr Microbiol 59: 593–599. doi: 10.1007/s00284-009-9479-7
|
[15] | Hoffmann T, Wensing A, Brosius M, Steil L, Volker U, et al. (2013) Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195: 510–522. doi: 10.1128/jb.01505-12
|
[16] | Obis D, Guillot A, Mistou MY (2001) Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett 202: 39–44. doi: 10.1111/j.1574-6968.2001.tb10777.x
|
[17] | Robert H, Le Marrec C, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol 66: 509–517. doi: 10.1128/aem.66.2.509-517.2000
|
[18] | Selmer-Olsen E, Birkeland S, Sorhaug T (1999) Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. J Appl Microbiol 87: 429–437. doi: 10.1046/j.1365-2672.1999.00839.x
|
[19] | Zhou S, Grabar TB, Shanmugam KT, Ingram LO (2006) Betaine tripled the volumetric productivity of (-)-lactate by Escherichia coli strain SZ132 in mineral salts medium. Biotechnol Lett 28: 671–676. doi: 10.1007/s10529-006-0033-4
|
[20] | Chojnacka A, Blaszczyk MK, Szczesny P, Nowak K, Suminska M, et al. (2011) Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria. Bioresour Technol 102: 10057–10064. doi: 10.1016/j.biortech.2011.08.063
|
[21] | G?ksungur Y, Güven? U (1997) Batch and continuous production of lactic acid from beet molasses by Lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol 69: 399–404. doi: 10.1002/(sici)1097-4660(199708)69:4<399::aid-jctb728>3.3.co;2-h
|
[22] | Hatano K, Kikuchi S, Nakamura Y, Sakamoto H, Takigami M, et al. (2009) Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses. Bioresour Technol 100: 4697–4703. doi: 10.1016/j.biortech.2009.04.063
|
[23] | Lotfy WA (2007) The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum: Optimization of process parameters through statistical experimental designs. Bioresour Technol 98: 3491–3498. doi: 10.1016/j.biortech.2006.11.035
|
[24] | Maqueda M, Perez-Nevado F, Regodon JA, Zamora E, Alvarez ML, et al. (2011) A low-cost procedure for production of fresh autochthonous wine yeast. J Ind Microbiol Biotechnol 38: 459–469. doi: 10.1007/s10295-010-0790-x
|
[25] | Roukas T, Serris G (1999) Effect of the shear rate on pullulan production from beet molasses by Aureobasidium pullulans in an airlift reactor. Appl Biochem Biotechnol 80: 77–89. doi: 10.1385/abab:80:1:77
|
[26] | Calik P, Levent H (2009) Effects of pulse feeding of beet molasses on recombinant benzaldehyde lyase production by Escherichia coli BL21(DE3). Appl Microbiol Biotechnol 85: 65–73. doi: 10.1007/s00253-009-2060-2
|
[27] | Ou MS, Ingram LO, Shanmugam KT (2011) (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38: 599–605. doi: 10.1007/s10295-010-0796-4
|
[28] | Xu K, Su F, Tao F, Li C, Ni J, et al. (2013) Genome sequences of two morphologically distinct and thermophilic Bacillus coagulans strains, H-1 and XZL9. Genome Announc 1.
|
[29] | Zheng ZJ, Sheng BB, Ma CQ, Zhang HW, Gao C, et al. (2012) Relative catalytic efficiency of ldhL- and ldhD-encoded products is crucial for optical purity of lactic acid produced by Lactobacillus strains. Appl Environ Microbiol 78: 3480–3483. doi: 10.1128/aem.00058-12
|
[30] | ?kerberg C, Hofvendahl K, Zacchi G, Hahn-H?gerdal B (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl Microbiol Biotechnol 49: 682–690. doi: 10.1007/s002530051232
|
[31] | Xi YL, Chen KQ, Dai WY, Ma JF, Zhang M, et al. (2013) Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source. Bioresour Technol 136: 775–779. doi: 10.1016/j.biortech.2013.03.107
|
[32] | Wang XL, Wang YM, Zhang X, Xu TW (2012) In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour Technol 125: 165–171. doi: 10.1016/j.biortech.2012.08.125
|
[33] | Xu K, Xu P (2014) Efficient production of -lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153: 23–29. doi: 10.1016/j.biortech.2013.11.057
|