[1] | Kunz C, Kuntz S, Rudloff S (2009) Intestinal flora. Adv Exp Med Biol 639: 67–79. doi: 10.1007/978-1-4020-8749-3_6
|
[2] | Morelli L (2008) Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr 138: S1791–S1795.
|
[3] | Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136: 65–80. doi: 10.1053/j.gastro.2008.10.080
|
[4] | Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Invest Dermatol Symp Proc 6: 170–174. doi: 10.1046/j.0022-202x.2001.00043.x
|
[5] | Hull MW, Chow AW (2007) Indigenous microflora and innate immunity of the head and neck. Infect Dis Clin North Am 21: 265–282. doi: 10.1016/j.idc.2007.03.015
|
[6] | Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837–848. doi: 10.1016/j.cell.2006.02.017
|
[7] | Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578–6583. doi: 10.1073/pnas.95.12.6578
|
[8] | Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9: 313–323. doi: 10.1038/nri2515
|
[9] | Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44: 353–360. doi: 10.1097/mcg.0b013e3181c87e02
|
[10] | Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzaléz A, et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within human. Science 332: 970–974. doi: 10.1126/science.1198719
|
[11] | Eisenhofer G, Aneman A, Friberg P, Hooper D, F?ndriks L, et al. (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82: 3864–3871. doi: 10.1210/jcem.82.11.4339
|
[12] | Karra E, Batterham RL (2009) The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol 316: 120–128. doi: 10.1016/j.mce.2009.06.010
|
[13] | Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325: 1128–1131. doi: 10.1126/science.1176950
|
[14] | Sommer MOA, Dantas G (2011) Antibiotics and the resistant microbiome. Curr Opin Microbiol 14: 556–563. doi: 10.1016/j.mib.2011.07.005
|
[15] | McConnell MA, Mercer AA, Tannock GW (1991) Transfer of plasmid pAMβI between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microb Ecol Health D 4: 343–355. doi: 10.3109/08910609109140149
|
[16] | Lester CH, Frimodt-Moller N, Sorensen TL, Monnet DL, Hammerum AM (2006) In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50: 596–599. doi: 10.1128/aac.50.2.596-599.2006
|
[17] | Trobos M, Lester CH, Olsen JE, Frimodt-Moller N, Hammerum AM (2008) Natural transfer of sulphonamide and ampicillin resistance between Escherichia coli residing in the human intestine. J Antimicrob Chemother 63: 80–86. doi: 10.1093/jac/dkn437
|
[18] | Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E (2010) Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci USA 107: 127–132. doi: 10.1073/pnas.0908978107
|
[19] | Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bacteriol 53: 673–684.
|
[20] | Franke AE, Clewell DB (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145: 494–502.
|
[21] | Burrus V, Pavlovic G, Decaris B, Guedon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46: 601–610. doi: 10.1046/j.1365-2958.2002.03191.x
|
[22] | Bates S, Cashmore AM, Wilkins BM (1998) IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J Bacteriol 180: 6538–6543.
|
[23] | Heinemann JA (1991) Genetics of gene transfer between species. Trends Genet 7: 181–185. doi: 10.1016/0168-9525(91)90433-q
|
[24] | Licht TR, Christensen BB, Krogfelt KA, Molin S (1999) Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145: 2615–2622.
|
[25] | Daniels JB, Call DR, Besser TE (2007) Molecular epidemiology of blaCMY-2 plasmids carried by Salmonella enterica and Escherichia coli isolates from cattle in the Pacific Northwest. Appl Environm Microbiol 73: 8005–8011. doi: 10.1128/aem.01325-07
|
[26] | Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, et al. (2011) In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J Appl Microbiol 110: 541–549. doi: 10.1111/j.1365-2672.2010.04907.x
|
[27] | Moubareck C, Bourgeois N, Courvalin P, Doucet-Populaire F (2003) Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of the gnobiotic mice. Antimicrob Agents Chemother 47: 2993–2996. doi: 10.1128/aac.47.9.2993-2996.2003
|
[28] | Faure S, Perrin-Guyomard A, Delmas JM, Chatre P, Laurentie M (2010) Transfer of plasmid-mediated CTX-M-9 from Salmonella enterica serotype Virchow to Enterobacteriaceae in human flora-associated rats treated with cefixime. Antimicrob Agebts Chemother 54: 164–169. doi: 10.1128/aac.00310-09
|
[29] | Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, et al. (2012) Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci USA 109: 1269–1274. doi: 10.1073/pnas.1113246109
|
[30] | Lupp C, Robertson ML, Wickham ME, Sekirov I, Campion OL, et al. (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriacea. Cell Host Microbe 2: 119–129. doi: 10.1016/j.chom.2007.06.010
|
[31] | Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, et al. (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5: e224. doi: 10.1371/journal.pbio.0050244
|
[32] | Pédron T, Sansonetti P (2008) Commensals, bacterial pathogens and intestinal inflammation: an intriguing ménage à trois. Cell Host Microbe 3: 344–347. doi: 10.1016/j.chom.2008.05.010
|
[33] | Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, et al. (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426–429. doi: 10.1038/nature09415
|
[34] | Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, et al. (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127: 412–421. doi: 10.1053/j.gastro.2004.04.061
|
[35] | Dantas G, Sommer MOA, Degnan PH, Goodman AL (2013) Experimental approaches for defining functional roles of microbes in the gut. Annu Rev Microbiol 67: 459–475. doi: 10.1146/annurev-micro-092412-155642
|
[36] | Kasuya M (1964) Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J Bacteriol 88: 322–328.
|
[37] | Roberts M, Falkow S (1979) In vivo conjugal transfer of R plasmids in Neisseria gonorrhoeae. Infect Immun 24: 982–984. doi: 10.1038/266630a0
|
[38] | Wadolkowski EA, Laux DC, Cohen PS (1988) Colonization of the streptomycin treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect Immun 56: 1030–1035.
|
[39] | Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S (1995) Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177: 5840–5845.
|
[40] | Licht TR, Tolker-Nielsen T, Holmstr?m K, Krogfelt KA, Molin S (1999) Inhibition of Escherichia coli precursor-16A rRNA processing by mouse intestinal contents. Environ Microbiol 1: 23–32. doi: 10.1046/j.1462-2920.1999.00001.x
|
[41] | Baquero F, Coque TM, de la Cruz F (2011) Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 52: 3649–3660. doi: 10.1128/aac.00013-11
|