Chlamydia trachomatis is an obligate intracellular bacterial pathogen and the second leading cause of sexually transmitted infections in the US. Infections cause significant morbidity and can lead to serious reproductive sequelae, including an epidemiological link to increased rates of reproductive cancers. One of the overt changes that infected cells exhibit is the development of genomic instability leading to multinucleation. Here we demonstrate that the induction of multinucleation is not conserved equally across chlamydial species; C. trachomatis L2 caused high levels of multinucleation, C. muridarum intermediate levels, and C. caviae had very modest effects on multinucleation. Our data show that at least two effector pathways together cause genomic instability during infection leading to multinucleation. We find that the highly conserved chlamydial protease CPAF is a key effector for one of these pathways. CPAF secretion is required for the loss of centrosome duplication regulation as well as inducing early mitotic exit. The second effector pathway involves the induction of centrosome position errors. This function is not conserved in three chlamydial species tested. Together these two pathways contribute to the induction of high levels of genomic instability and multinucleation seen in C. trachomatis infections.
References
[1]
World Health Organization Department of HIV/AIDS ? 2001 (2001) Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overview and Estimates: 1–50. Available: http://scholar.google.com/scholar?q=rela?ted:L-SievXYVcQJ:scholar.google.com/&hl=?en&num=30&as_sdt=0,5.
[2]
Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143–190.
[3]
Cates W, Wasserheit JN (1991) Genital chlamydial infections: epidemiology and reproductive sequelae. Am J Obstet Gynecol 164: 1771–1781. doi: 10.1016/0002-9378(91)90559-a
[4]
Koskela P, Anttila T, Bj?rge T, Brunsvig A, Dillner J, et al. (2000) Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer 85: 35–39. doi: 10.1002/(sici)1097-0215(20000101)85:1<35::aid-ijc6>3.0.co;2-a
[5]
Anttila T, Saikku P, Koskela P, Bloigu A, Dillner J, et al. (2001) Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 285: 47–51. doi: 10.1001/jama.285.1.47
[6]
Samaras V, Rafailidis PI, Mourtzoukou EG, Peppas G, Falagas ME (2010) Chronic bacterial and parasitic infections and cancer: a review. J Infect Dev Ctries 4: 267–281. doi: 10.3855/jidc.819
[7]
Alibek K, Karatayeva N, Bekniyazov I (2012) The role of infectious agents in urogenital cancers. Infect Agents Cancer 7: 35 doi:10.1186/1750-9378-7-35.
[8]
Sun HS, Wilde A, Harrison RE (2011) Chlamydia trachomatis Inclusions Induce Asymmetric Cleavage Furrow Formation and Ingression Failure in Host Cells. Mol Cell Biol 31: 5011–5022 doi:10.1128/MCB.05734-11.
[9]
Greene W, Zhong G (2003) Inhibition of host cell cytokinesis by Chlamydia trachomatis infection. J Infect 47: 45–51. doi: 10.1016/s0163-4453(03)00039-2
[10]
Brown HM, Knowlton AE, Grieshaber SS (2012) Chlamydial Infection Induces Host Cytokinesis Failure at Abscission. Cell Microbiol. doi:10.1111/j.1462-5822.2012.01820.x.
[11]
Knowlton AE, Brown HM, Richards TS, Andreolas LA, Patel RK, et al. (2011) Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification. Traffic 12: 854–866 doi:10.1111/j.1600-0854.2011.01204.x.
[12]
Knowlton AE, Fowler LJ, Patel RK, Wallet SM, Grieshaber SS (2013) Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model. PLoS ONE 8: e54022 doi:10.1371/journal.pone.0054022.
[13]
Weihua Z, Lin Q, Ramoth AJ, Fan D, Fidler IJ (2011) Formation of solid tumors by a single multinucleated cancer cell. Cancer 117: 4092–4099 doi:10.1002/cncr.26021.
[14]
Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, et al. (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58: 3974–3985.
[15]
Korzeniewski N, Spardy N, Duensing A, Duensing S (2011) Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 305: 113–122 doi:10.1016/j.canlet.2010.10.013.
[16]
Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, et al. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28: 1397–1406. doi: 10.1093/nar/28.6.1397
[17]
Read TD, Joseph SJ, Didelot X, Liang B, Patel L, et al.. (2013) Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. MBio 4. doi:10.1128/mBio.00604-12.
[18]
Read TD, Myers GSA, Brunham RC, Nelson WC, Paulsen IT, et al. (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31: 2134–2147. doi: 10.1093/nar/gkg321
[19]
Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31: 1161–1176.
[20]
Nguyen BD, Valdivia RH (2012) Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci USA. doi:10.1073/pnas.1117884109.
[21]
Rebacz B, Larsen TO, Clausen MH, R?nnest MH, L?ffler H, et al. (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67: 6342–6350 doi:10.1158/0008-5472.CAN-07-0663.
[22]
R?nnest MH, Rebacz B, Markworth L, Terp AH, Larsen TO, et al. (2009) Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J Med Chem 52: 3342–3347 doi:10.1021/jm801517j.
[23]
Kr?mer A, Raab MS, Rebacz B (2008) Induction of spindle multipolarity by centrosomal cluster inhibition. Cell Oncol 30: 505–506.
[24]
Gupta PK, Lee EF, Erozan YS, Frost JK, Geddes ST, et al. (1979) Cytologic investigations in Chlamydia infection. Acta Cytol 23: 315–320.
[25]
Grieshaber SS, Grieshaber NA, Miller N, Hackstadt T (2006) Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic 7: 940–949 doi:10.1111/j.1600-0854.2006.00439.x.
[26]
Huang Z, Feng Y, Chen D, Wu X, Huang S, et al. (2008) Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4: 529–542 doi:10.1016/j.chom.2008.10.005.
[27]
Chen D, Lei L, Lu C, Flores R, DeLisa MP, et al. (2010) Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology (Reading, Engl) 156: 3031–3040 doi:10.1099/mic.0.040527-0.
[28]
Mital J, Miller NJ, Fischer ER, Hackstadt T (2010) Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell Microbiol 12: 1235–1249 doi:10.1111/j.1462-5822.2010.01465.x.
[29]
Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD (2000) A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2: 35–47. doi: 10.1046/j.1462-5822.2000.00029.x
[30]
Smith JS, Bosetti C, Mu?oz N, Herrero R, Bosch FX, et al. (2004) Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer 111: 431–439 doi:10.1002/ijc.20257.
[31]
Lehtinen M, Ault KA, Lyytikainen E, Dillner J, Garland SM, et al. (2011) Chlamydia trachomatis infection and risk of cervical intraepithelial neoplasia. Sex Transm Infect 87: 372–376 doi:10.1136/sti.2010.044354.
[32]
Smith JS, Mu?oz N, Herrero R, Eluf-Neto J, Ngelangel C, et al. (2002) Evidence for Chlamydia trachomatis as a human papillomavirus cofactor in the etiology of invasive cervical cancer in Brazil and the Philippines. J Infect Dis 185: 324–331 doi:10.1086/338569.
[33]
Madeleine MM, Anttila T, Schwartz SM, Saikku P, Leinonen M, et al. (2007) Risk of cervical cancer associated with Chlamydia trachomatis antibodies by histology, HPV type and HPV cofactors. Int J Cancer 120: 650–655 doi:10.1002/ijc.22325.
[34]
Arnheim Dahlstr?m L, Andersson K, Luostarinen T, Thoresen S, ?gmundsdottír H, et al. (2011) Prospective seroepidemiologic study of human papillomavirus and other risk factors in cervical cancer. Cancer Epidemiol Biomarkers Prev 20: 2541–2550 doi:10.1158/1055-9965.EPI-11-0761.
[35]
Seda J, Avellanet Y, Roca FJ, Hernández E, Umpierre SA, et al. (2011) Risk factors for abnormal cervical cytology in pregnant women attending the high-risk obstetrics clinic at the University Hospital in San Juan, Puerto Rico. P R Health Sci J 30: 14–17.
[36]
da Silva Barros NK, Costa MC, Alves RRF, Villa LL, Derchain SFM, et al. (2012) Association of HPV infection and Chlamydia trachomatis seropositivity in cases of cervical neoplasia in Midwest Brazil. J Med Virol 84: 1143–1150 doi:10.1002/jmv.23312.
[37]
Deluca GD, Basiletti J, Schelover E, Vásquez ND, Alonso JM, et al. (2011) Chlamydia trachomatis as a probable cofactor in human papillomavirus infection in aboriginal women from northeastern Argentina. Braz J Infect Dis 15: 567–572. doi: 10.1016/s1413-8670(11)70252-5
[38]
Wallin K-L, Wiklund F, Luostarinen T, Angstr?m T, Anttila T, et al. (2002) A population-based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer 101: 371–374 doi:10.1002/ijc.10639.
[39]
Matsumoto K, Yasugi T, Oki A, Hoshiai H, Taketani Y, et al. (2003) Are smoking and chlamydial infection risk factors for CIN? Different results after adjustment for HPV DNA and antibodies. Br J Cancer 89: 831–833 doi:10.1038/sj.bjc.6601220.
[40]
Hinkula M, Pukkala E, Kyyr?nen P, Laukkanen P, Koskela P, et al. (2004) A population-based study on the risk of cervical cancer and cervical intraepithelial neoplasia among grand multiparous women in Finland. Br J Cancer 90: 1025–1029 doi:10.1038/sj.bjc.6601650.
[41]
Luostarinen T, Namujju PB, Merikukka M, Dillner J, Hakulinen T, et al.. (2013) Order of HPV/Chlamydia infections and cervical high-grade precancer risk: A case-cohort study. Int J Cancer. doi:10.1002/ijc.28173.
[42]
Peitsidis P, Kalmantis K, Peitsidou A, Zervoudis S, Papaspyrou I, et al. (2012) Chlamydial infection in female lower genital tract and its correlation with cervical smear abnormalities. Bratisl Lek Listy 113: 357–360. doi: 10.4149/bll_2012_081
[43]
Pihan G, Doxsey SJ (2003) Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell 4: 89–94. doi: 10.1016/s1535-6108(03)00195-8