全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Tissue-Specific Expressed Antibody Variable Gene Repertoires

DOI: 10.1371/journal.pone.0100839

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of na?ve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.

References

[1]  Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581. doi: 10.1038/302575a0
[2]  Schatz DG (2004) V(D)J recombination. Immunol Rev 200: 5–11 doi:10.1111/j.0105-2896.2004.00173.x.
[3]  Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, et al. (1992) VDJ recombination. Immunology Today 13: 306–314. doi: 10.1016/0167-5699(92)90043-7
[4]  Neuberger MS (2008) Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86: 124–132 doi:10.1038/sj.icb.7100160.
[5]  Milstein C, Neuberger M (1996) Maturation of the immune response. Adv Protein Chem 49: 451–485. doi: 10.1016/s0065-3233(08)60494-5
[6]  Neuberger MS, Milstein C (1995) Somatic hypermutation. Curr Opin Immunol 7: 248–254. doi: 10.1016/0952-7915(95)80010-7
[7]  Adderson EE, Shackelford PG, Quinn A, Carroll WL (1991) Restricted Ig H chain V gene usage in the human antibody response to Haemophilus influenzae type b capsular polysaccharide. J Immunol 147: 1667–1674. doi: 10.1203/00006450-199303000-00022
[8]  Tian C, Luskin GK, Dischert KM, Higginbotham JN, Shepherd BE, et al. (2008) Immunodominance of the VH1-46 antibody gene segment in the primary repertoire of human rotavirus-specific B cells is reduced in the memory compartment through somatic mutation of nondominant clones. J Immunol 180: 3279–3288. doi: 10.4049/jimmunol.180.5.3279
[9]  Tian C, Luskin GK, Dischert KM, Higginbotham JN, Shepherd BE, et al. (2007) Evidence for preferential Ig gene usage and differential TdT and exonuclease activities in human na?ve and memory B cells. Mol Immunol 44: 2173–2183 doi:10.1016/j.molimm.2006.11.020.
[10]  Weitkamp JH, Kallewaard NL, Bowen AL, LaFleur BJ, Greenberg HB, et al. (2005) VH1-46 is the dominant immunoglobulin heavy chain gene segment in rotavirus-specific memory B cells expressing the intestinal homing receptor alpha4beta7. J Immunol 174: 3454–3460. doi: 10.4049/jimmunol.174.6.3454
[11]  Gorny MK, Wang X-H, Williams C, Volsky B, Revesz K, et al. (2009) Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol Immunol 46: 917–926 doi:10.1016/j.molimm.2008.09.005.
[12]  Zouali M (1996) Nonrandom features of the human immunoglobulin variable region gene repertoire expressed in response to HIV-1. Appl Biochem Biotech 61: 149–155. doi: 10.1007/bf02785697
[13]  Briney B, Willis JR, McKinney BA, Crowe JE (2012) High-throughput antibody sequencing reveals genetic evidence of global regulation of the na?ve and memory repertoires that extends across individuals. Genes Immun. doi:10.1038/gene.2012.20.
[14]  Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, et al. (2011) High-resolution description of antibody heavy-chain repertoires in humans. PLoS ONE 6: e22365 doi:10.1371/journal.pone.0022365.
[15]  Dekosky BJ, Ippolito GC, Deschner RP, Lavinder JJ, Wine Y, et al. (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nature biotechnology. doi:10.1038/nbt.2492.
[16]  Wu Y-C, Kipling D, Leong HS, Martin V, Ademokun AA, et al. (2010) High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116: 1070–1078 doi:10.1182/blood-2010-03-275859.
[17]  Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, et al. (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1: 12ra23. doi: 10.1126/scitranslmed.3000540
[18]  Boyd SD, Ga?ta BA, Jackson KJ, Fire AZ, Marshall EL, et al. (2010) Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 184: 6986–6992 doi:10.4049/jimmunol.1000445.
[19]  Cerutti A, Chen K, Chorny A (2011) Immunoglobulin responses at the mucosal interface. Annu Rev Immunol 29: 273–293 doi:10.1146/annurev-immunol-031210-101317.
[20]  Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3: 63–72 doi:10.1038/nri982.
[21]  Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H, et al. (2010) The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33: 71–83 doi:10.1016/j.immuni.2010.07.003.
[22]  Holtmeier W, Hennemann A, Caspary WF (2000) IgA and IgM V(H) repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119: 1253–1266. doi: 10.1053/gast.2000.20219
[23]  van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, et al. (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17: 2257–2317 doi:10.1038/sj.leu.2403202.
[24]  Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, et al. (2009) IMGT, the international ImMunoGeneTics information system. Nucl Acids Res 37: D1006–D1012 doi:10.1093/nar/gkn838.
[25]  Alamyar E, Giudicelli V, Li S, Duroux P, Lefranc M-P (2012) IMGT/HighV-QUEST: the IMGT web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res 8: 26. doi: 10.1007/978-1-61779-842-9_32
[26]  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140 doi:10.1093/bioinformatics/btp616.
[27]  Benckert J, Schmolka N, Kreschel C, Zoller MJ, Sturm A, et al. (2011) The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest 121: 1946–1955 doi:10.1172/JCI44447.
[28]  Briney B, Willis JR, Crowe JE (2012) Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS ONE 7: e36750 doi:10.1371/journal.pone.0036750.
[29]  Aguilera I, Melero J, Nu?ez-Roldan A, Sanchez B (2001) Molecular structure of eight human autoreactive monoclonal antibodies. Immunology 102: 273–280. doi: 10.1046/j.1365-2567.2001.01159.x
[30]  Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, et al. (2003) Predominant autoantibody production by early human B cell precursors. Science 301: 1374–1377 doi:10.1126/science.1086907.
[31]  Crouzier R, Martin T, Pasquali JL (1995) Heavy chain variable region, light chain variable region, and heavy chain CDR3 influences on the mono- and polyreactivity and on the affinity of human monoclonal rheumatoid factors. J Immunol 154: 4526–4535.
[32]  Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, et al. (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308: 1906–1908 doi:10.1126/science.1111781.
[33]  Zemlin M, Schelonka RL, Ippolito GC, Zemlin C, Zhuang Y, et al. (2008) Regulation of repertoire development through genetic control of DH reading frame preference. J Immunol 181: 8416–8424. doi: 10.4049/jimmunol.181.12.8416
[34]  Wilson PC, Liu YJ, Banchereau J, Capra JD, Pascual V (1998) Amino acid insertions and deletions contribute to diversify the human Ig repertoire. Immunol Rev 162: 143–151. doi: 10.1111/j.1600-065x.1998.tb01437.x
[35]  Wilson PC, de Bouteiller O, Liu YJ, Potter K, Banchereau J, et al. (1998) Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med 187: 59–70. doi: 10.1084/jem.187.1.59
[36]  Briney B, Willis JR, Crowe JE (2012) Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immun. doi:10.1038/gene.2012.28.
[37]  Krause JC, Ekiert DC, Tumpey TM, Smith PB, Wilson IA, et al. (2011) An insertion mutation that distorts antibody binding site architecture enhances function of a human antibody. MBio 2: e00345–10 doi:10.1128/mBio.00345-10.
[38]  Wu X, Yang Z-Y, Li Y, Hogerkorp C-M (2010) Schief WR, et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329: 856–861 doi:10.1126/science.1187659.
[39]  Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: 466–470 doi:10.1038/nature10373.
[40]  Walker LM, Phogat SK, Chan-Hui P-Y, Wagner D, Phung P, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: 285–289 doi:10.1126/science.1178746.
[41]  Wilson PC, de Bouteiller O, Liu Y, Potter K, Banchereau J, et al. (1998) Somatic hypermutation introduces insertions and deletions into immunoglobulin genes. J Exp Med 187: 59–70. doi: 10.1084/jem.187.1.59
[42]  Wine Y, Boutz DR, Lavinder JJ, Miklos AE, Hughes RA, et al. (2013) Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc Natl Acad Sci USA. doi:10.1073/pnas.1213737110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133