全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage

DOI: 10.1371/journal.pone.0099654

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.

References

[1]  Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, et al. (2009) Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene 28: 117–127. doi: 10.1038/onc.2008.364
[2]  Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, et al. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246: 670–673. doi: 10.1126/science.2530630
[3]  Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD (1990) Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 161: 153–160. doi: 10.1002/path.1711610210
[4]  Leroy E, Boyer R, Auburger G, Leube B, Ulm G, et al. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395: 451–452. doi: 10.1038/26652
[5]  Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78: 959–991. doi: 10.1146/annurev.biochem.052308.114844
[6]  Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574–581. doi: 10.1038/nsmb.1591
[7]  Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899. doi: 10.1038/nature02263
[8]  Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, et al. (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102: 13135–13140. doi: 10.1073/pnas.0505801102
[9]  Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, et al. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24: 197–211. doi: 10.1016/s0197-4580(02)00065-9
[10]  Cookson MR, Hardy J, Lewis PA (2008) Genetic neuropathology of Parkinson's disease. Int J Clin Exp Pathol 1: 217–231.
[11]  Tsika E, Moysidou M, Guo J, Cushman M, Gannon P, et al. (2010) Distinct region-specific alpha-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J Neurosci 30: 3409–3418. doi: 10.1523/jneurosci.4977-09.2010
[12]  Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, et al. (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146: 37–52. doi: 10.1016/j.cell.2011.06.001
[13]  Forno LS (1969) Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 17: 557–575.
[14]  Saito Y, Ruberu NN, Sawabe M, Arai T, Kazama H, et al. (2004) Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol 63: 742–749. doi: 10.1016/j.parkreldis.2006.05.023
[15]  Dawson TM, Ko HS, Dawson VL (2012) Genetic animal models of Parkinson's disease. Neuron 66: 646–661. doi: 10.1016/j.neuron.2010.04.034
[16]  Parkkinen L, Pirttila T, Tervahauta M, Alafuzoff I (2005) Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology 25: 304–314. doi: 10.1111/j.1440-1789.2005.00644.x
[17]  Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, et al. (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279: 4625–4631. doi: 10.1074/jbc.m310994200
[18]  Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29. doi: 10.1016/s0006-8993(97)00874-3
[19]  Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson's disease? Nat Cell Biol 2: E115–119.
[20]  Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103: 17–37. doi: 10.1111/j.1471-4159.2007.04764.x
[21]  Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog Brain Res 183: 115–145. doi: 10.1016/s0079-6123(10)83007-9
[22]  Kabuta T, Setsuie R, Mitsui T, Kinugawa A, Sakurai M, et al. (2008) Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet 17: 1482–1496. doi: 10.1093/hmg/ddn037
[23]  Koharudin LM, Liu H, Di Maio R, Kodali RB, Graham SH, et al. (2010) Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1. Proc Natl Acad Sci U S A 107: 6835–6840. doi: 10.1073/pnas.1002295107
[24]  Meray RK, Lansbury PT Jr (2007) Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. J Biol Chem 282: 10567–10575. doi: 10.1074/jbc.m611153200
[25]  Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195–201. doi: 10.1038/35056583
[26]  Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, et al. (1990) Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54: 823–827. doi: 10.1111/j.1471-4159.1990.tb02325.x
[27]  Hao LY, Giasson BI, Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci U S A 107: 9747–9752. doi: 10.1073/pnas.0911175107
[28]  Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, et al. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103: 10793–10798. doi: 10.1073/pnas.0602493103
[29]  Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, et al. (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107: 378–383. doi: 10.1073/pnas.0911187107
[30]  Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, et al. (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 99: 14524–14529. doi: 10.1073/pnas.172514599
[31]  Casarejos MJ, Menendez J, Solano RM, Rodriguez-Navarro JA, Garcia de Yebenes J, et al. (2006) Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97: 934–946. doi: 10.1111/j.1471-4159.2006.03777.x
[32]  Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A 105: 11364–11369. doi: 10.1073/pnas.0802076105
[33]  Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, et al. (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8: 267–280. doi: 10.1016/j.stem.2011.01.013
[34]  Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53 Suppl 3S26–36 discussion S36–28. doi: 10.1002/ana.10483
[35]  Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 88: 193–201. doi: 10.1093/toxsci/kfi304
[36]  Callio J, Oury TD, Chu CT (2005) Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 280: 18536–18542. doi: 10.1074/jbc.m413224200
[37]  Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4: 365–375. doi: 10.1038/nrn1100
[38]  Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson's disease. Trends Neurosci 26: 345–346. doi: 10.1016/s0166-2236(03)00144-9
[39]  Spector A, Roy D (1978) Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A 75: 3244–3248. doi: 10.1073/pnas.75.7.3244
[40]  Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, et al. (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103: 7142–7147. doi: 10.1073/pnas.0602046103
[41]  Jeong J, Jung Y, Na S, Lee E, Kim MS, et al. (2011) Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics 10: M110 000513. doi: 10.1074/mcp.m110.000513
[42]  Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72: 8463–8471.
[43]  Lee T, Hoofnagle AN, Resing KA, Ahn NG (2005) Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation. J Mol Biol 353: 600–612. doi: 10.1016/j.jmb.2005.08.029
[44]  Kim MS, Jeong J, Shin DH, Lee KJ (2013) Structure of Nm23-H1 under oxidative conditions. Acta Crystallogr D Biol Crystallogr 69: 669–680. doi: 10.1107/s0907444913001194
[45]  Seo J, Jeong J, Kim YM, Hwang N, Paek E, et al. (2008) Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 7: 587–602. doi: 10.1021/pr700657y
[46]  Lee E, Jeong J, Kim SE, Song EJ, Kang SW, et al. (2009) Multiple functions of Nm23-H1 are regulated by oxido-reduction system. PLoS one 4: e7949. doi: 10.1371/journal.pone.0007949
[47]  Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, et al. (2003) Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol Biol Cell 14: 4541–4556. doi: 10.1091/mbc.e03-02-0078
[48]  Shim JH, Yoon SH, Kim KH, Han JY, Ha JY, et al.. (2011) The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells. Mitochondrion.
[49]  Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson's disease. J Immunol 185: 1230–1237. doi: 10.4049/jimmunol.1000208
[50]  Chung YC, Kim SR, Park JY, Chung ES, Park KW, et al. (2011) Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 60: 963–974. doi: 10.1016/j.neuropharm.2011.01.043
[51]  Huh SH, Chung YC, Piao Y, Jin MY, Son HJ, et al. (2011) Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson's disease. J Immunol 187: 960–969. doi: 10.4049/jimmunol.1100009
[52]  West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231: 482–497. doi: 10.1002/ar.1092310411
[53]  Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, et al. (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12: 1945–1958. doi: 10.1093/hmg/ddg211
[54]  Bittencourt Rosas SL, Caballero OL, Dong SM, da Costa Carvalho Mda G, Sidransky D, et al. (2001) Methylation status in the promoter region of the human PGP9.5 gene in cancer and normal tissues. Cancer Lett 170: 73–79. doi: 10.1016/s0304-3835(01)00449-9
[55]  Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795–803. doi: 10.1083/jcb.200809125
[56]  Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, et al. (2006) Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci U S A 103: 4675–4680. doi: 10.1073/pnas.0510403103
[57]  Heikkila R, Cohen G (1971) Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science 172: 1257–1258. doi: 10.1126/science.172.3989.1257
[58]  Lotharius J, O′Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275: 38581–38588. doi: 10.1074/jbc.m005385200
[59]  Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 26: 719–723. doi: 10.1002/ana.410260606
[60]  Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, et al. (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1: 1269. doi: 10.1111/j.1471-4159.1990.tb02325.x
[61]  Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 1189: 215–218. doi: 10.1016/j.brainres.2007.10.061
[62]  Day IN, Thompson RJ (1987) Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett 210: 157–160. doi: 10.1016/0014-5793(87)81327-3
[63]  Bazykin GA, Kochetov AV (2011) Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res 39: 567–577. doi: 10.1093/nar/gkq806
[64]  Leissring MA, Farris W, Wu X, Christodoulou DC, Haigis MC, et al. (2004) Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J 383: 439–446. doi: 10.1042/bj20041081
[65]  Kaipio K, Kallio J, Pesonen U (2005) Mitochondrial targeting signal in human neuropeptide Y gene. Biochem Biophys Res Commun 337: 633–640. doi: 10.1016/j.bbrc.2005.09.093
[66]  Sunderland PA, West CE, Waterworth WM, Bray CM (2004) Choice of a start codon in a single transcript determines DNA ligase 1 isoform production and intracellular targeting in Arabidopsis thaliana. Biochem Soc Trans 32: 614–616. doi: 10.1042/bst0320614
[67]  Gandre S, Bercovich Z, Kahana C (2003) Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2: 245–256. doi: 10.1016/s1567-7249(02)00105-8
[68]  Kochetov AV (2008) Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30: 683–691. doi: 10.1002/bies.20771
[69]  Wilkinson KD, Laleli-Sahin E, Urbauer J, Larsen CN, Shih GH, et al. (1999) The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3. J Mol Biol 291: 1067–1077. doi: 10.1006/jmbi.1999.3038
[70]  Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158–1160. doi: 10.1126/science.1096284
[71]  Takahashi-Niki K, Niki T, Taira T, Iguchi-Ariga SM, Ariga H (2004) Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients. Biochem Biophys Res Commun 320: 389–397. doi: 10.1016/j.bbrc.2004.05.187
[72]  Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, et al. (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5: 213–218. doi: 10.1038/sj.embor.7400074
[73]  Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, et al. (2004) The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101: 9103–9108. doi: 10.1073/pnas.0402959101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133