Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.
References
[1]
Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108. doi: 10.3322/canjclin.55.2.74
[2]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. doi: 10.3322/caac.20107
[3]
Ilson DH (2008) Esophageal cancer chemotherapy: recent advances. Gastrointest Cancer Res 2: 85–92.
[4]
Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4: 139–163. doi: 10.4161/cbt.4.2.1508
[5]
Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5: 897–907. doi: 10.1038/nrm1496
[6]
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674. doi: 10.1016/j.cell.2011.02.013
[7]
Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4: 307–320. doi: 10.1038/nrd1691
[8]
Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, et al. (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471: 368–372. doi: 10.1038/nature09857
[9]
Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, et al. (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330–334. doi: 10.1038/nature10273
[10]
Miller CR, Dunham CP, Scheithauer BW, Perry A (2006) Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24: 5419–5426. doi: 10.1200/jco.2006.08.1497
[11]
Eilber FC, Rosen G, Eckardt J, Forscher C, Nelson SD, et al. (2001) Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol 19: 3203–3209.
[12]
Kravchenko-Balasha N, Mizrachy-Schwartz S, Klein S, Levitzki A (2009) Shift from apoptotic to necrotic cell death during human papillomavirus-induced transformation of keratinocytes. J Biol Chem 284: 11717–11727. doi: 10.1074/jbc.m900217200
[13]
Sharma A, Ramanjaneyulu A, Ray R, Rajeswari MR (2009) Involvement of high mobility group B proteins in cisplatin-induced cytotoxicity in squamous cell carcinoma of skin. DNA Cell Biol 28: 311–318. doi: 10.1089/dna.2009.0851
[14]
Cui Q, Jiang W, Guo J, Liu C, Li D, et al. (2011) Relationship between hypermethylated MGMT gene and osteosarcoma necrosis rate after chemotherapy. Pathol Oncol Res 17: 587–591. doi: 10.1007/s12253-010-9354-7
[15]
Bajpai J, Gamnagatti S, Kumar R, Sreenivas V, Sharma MC, et al. (2011) Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol 41: 441–450. doi: 10.1007/s00247-010-1876-3
[16]
Vanlangenakker N, Bertrand MJ, Bogaert P, Vandenabeele P, Vanden Berghe T (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2: e230. doi: 10.1038/cddis.2011.111
[17]
He S, Wang L, Miao L, Wang T, Du F, et al. (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137: 1100–1111. doi: 10.1016/j.cell.2009.05.021
[18]
Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, et al. (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135: 1311–1323. doi: 10.1016/j.cell.2008.10.044
[19]
Galluzzi L, Kepp O, Kroemer G (2009) RIP kinases initiate programmed necrosis. J Mol Cell Biol 1: 8–10. doi: 10.1093/jmcb/mjp007
[20]
Sun L, Wang H, Wang Z, He S, Chen S, et al. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148: 213–227. doi: 10.1016/j.cell.2011.11.031
[21]
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700–714. doi: 10.1038/nrm2970
[22]
Hughes MA, Langlais C, Cain K, MacFarlane M (2013) Isolation, characterisation and reconstitution of cell death signalling complexes. Methods 61: 98–104. doi: 10.1016/j.ymeth.2013.02.006
[23]
Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, et al. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150: 339–350. doi: 10.1016/j.cell.2012.06.019
[24]
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, et al. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: 332–336. doi: 10.1126/science.1172308
[25]
Declercq W, Vanden Berghe T, Vandenabeele P (2009) RIP kinases at the crossroads of cell death and survival. Cell 138: 229–232. doi: 10.1016/j.cell.2009.07.006
[26]
Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T (1992) Characterization of 21 newly established esophageal cancer cell lines. Cancer 69: 277–284. doi: 10.1002/1097-0142(19920115)69:2<277::aid-cncr2820690202>3.0.co;2-c
[27]
Xu Y, Zhou L, Huang J, Liu F, Yu J, et al. (2011) Role of Smac in determining the chemotherapeutic response of esophageal squamous cell carcinoma. Clin Cancer Res 17: 5412–5422. doi: 10.1158/1078-0432.ccr-11-0426
[28]
Loder S, Fakler M, Schoeneberger H, Cristofanon S, Leibacher J, et al. (2012) RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia 26: 1020–1029. doi: 10.1038/leu.2011.353
[29]
Irizarry RA, Ooi SL, Wu Z, Boeke JD (2003) Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol 2: Article1. doi: 10.2202/1544-6115.1002
[30]
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[31]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[32]
Lash LH, Putt DA, Hueni SE, Krause RJ, Elfarra AA (2003) Roles of necrosis, Apoptosis, and mitochondrial dysfunction in S-(1,2-dichlorovinyl)-L-cysteine sulfoxide-induced cytotoxicity in primary cultures of human renal proximal tubular cells. J Pharmacol Exp Ther 305: 1163–1172. doi: 10.1124/jpet.102.046185
[33]
Cho YS, Challa S, Moquin D, Genga R, Ray TD, et al. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137: 1112–1123. doi: 10.1016/j.cell.2009.05.037
[34]
Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, et al. (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18: 26–37. doi: 10.1038/cdd.2010.72
[35]
Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, et al. (2012) Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119: 2368–2375. doi: 10.1182/blood-2011-08-375303
[36]
Li DD, Sun T, Wu XQ, Chen SP, Deng R, et al. (2012) The inhibition of autophagy sensitises colon cancer cells with wild-type p53 but not mutant p53 to topotecan treatment. PLoS One 7: e45058. doi: 10.1371/journal.pone.0045058
[37]
Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, et al. (2013) Diverse Sequence Determinants Control Human and Mouse Receptor Interacting Protein 3 (RIP3) and Mixed Lineage Kinase domain-Like (MLKL) Interaction in Necroptotic Signaling. J Biol Chem 288: 16247–16261. doi: 10.1074/jbc.m112.435545
[38]
Eschenburg G, Eggert A, Schramm A, Lode HN, Hundsdoerfer P (2012) Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-alpha-independent apoptosis. Cancer Res 72: 2645–2656. doi: 10.1158/0008-5472.can-11-4072
[39]
Zhang LJ, Hao YZ, Hu CS, Ye Y, Xie QP, et al. (2008) Inhibition of apoptosis facilitates necrosis induced by cisplatin in gastric cancer cells. Anticancer Drugs 19: 159–166. doi: 10.1097/cad.0b013e3282f30d05
[40]
Sancho-Martinez SM, Piedrafita FJ, Cannata-Andia JB, Lopez-Novoa JM, Lopez-Hernandez FJ (2011) Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci 122: 73–85. doi: 10.1093/toxsci/kfr098
[41]
Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59: 657–663.
[42]
Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285: F610–618.
[43]
Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, et al. (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109: 5322–5327. doi: 10.1073/pnas.1200012109
[44]
Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE (2013) Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57: 1773–1783. doi: 10.1002/hep.26200
[45]
Lin J, Li H, Yang M, Ren J, Huang Z, et al. (2013) A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3: 200–210. doi: 10.1016/j.celrep.2012.12.012
[46]
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, et al. (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: 313–321. doi: 10.1038/nchembio.83
[47]
Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 14: 400–410. doi: 10.1038/sj.cdd.4402085
[48]
Fuertes MA, Castilla J, Alonso C, Perez JM (2003) Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10: 257–266. doi: 10.2174/0929867033368484
[49]
Xia Y, Yang W, Bu W, Ji H, Zhao X, et al.. (2013) Differential regulation of c-Jun plays an instrumental role in chemoresistance of cancer cells. J Biol Chem.
[50]
Wainford RD, Weaver RJ, Hawksworth GM (2009) The immediate early genes, c-fos, c-jun and AP-1, are early markers of platinum analogue toxicity in human proximal tubular cell primary cultures. Toxicol In Vitro 23: 780–788. doi: 10.1016/j.tiv.2009.04.004
[51]
Muscella A, Urso L, Calabriso N, Vetrugno C, Rochira A, et al. (2009) Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol 156: 751–763. doi: 10.1111/j.1476-5381.2008.00049.x
[52]
Ogawa Y, Nishioka A, Hamada N, Terashima M, Inomata T, et al. (1997) Immunohistochemical study of c-fos-positive lymphocytes infiltrated into human squamous cell carcinomas of the head and neck during radiation therapy and its clinical significance. Clin Cancer Res 3: 2301–2307.
[53]
Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372–377. doi: 10.1016/s0962-8924(01)02064-5