全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Assessing the Efficacy of Nano- and Micro-Sized Magnetic Particles as Contrast Agents for MRI Cell Tracking

DOI: 10.1371/journal.pone.0100259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI) of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the ‘3Rs’, the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

References

[1]  Taylor A, Wilson KM, Murray P, Fernig DG, Levy R (2012) Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev 41: 2707–2717. doi: 10.1039/c2cs35031a
[2]  Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8: 677–688. doi: 10.1038/nrclinonc.2011.141
[3]  Brader P, Serganova I, Blasberg RG (2013) Noninvasive Molecular Imaging Using Reporter Genes. J Nucl Med 54: 167–172. doi: 10.2967/jnumed.111.099788
[4]  de Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotech 23: 1407–1413. doi: 10.1038/nbt1154
[5]  Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, et al. (2012) In Vivo Mononuclear Cell Tracking Using Superparamagnetic Particles of Iron Oxide: Feasibility and Safety in Humans. Circ Cardiovascular Imaging 5: 509–517. doi: 10.1161/circimaging.112.972596
[6]  Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, et al. (2008) Clinical Magnetic Resonance Imaging of Pancreatic Islet Grafts After Iron Nanoparticle Labeling. Am J Transplant 8: 701–706. doi: 10.1111/j.1600-6143.2007.02120.x
[7]  Zhu J, Zhou L, XingWu F (2006) Tracking Neural Stem Cells in Patients with Brain Trauma. New Engl J Med 355: 2376–2378. doi: 10.1056/nejmc055304
[8]  Kalva SP, Blake MA, Sahani DV (2006) MR Contrast Agents. Applied Radiology 35: 18–27.
[9]  Bulte JWM (2009) In Vivo MRI Cell Tracking: Clinical Studies. Am J Roentgenol 193: 314–325. doi: 10.2214/ajr.09.3107
[10]  Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 60: 1252–1265. doi: 10.1016/j.addr.2008.03.018
[11]  Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. In: James F. Riordan BLV, editor. Method Enzymol: Academic Press. pp. 357–364.
[12]  Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan), a contrast agent for magnetic resonance imaging. J Pharmaceut Biomed 28: 323–329. doi: 10.1016/s0731-7085(01)00592-1
[13]  Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13: 661–674. doi: 10.1016/0730-725x(95)00024-b
[14]  Shapiro E, Koretsky A (2008) Micron-Sized Iron Oxide Particles (MPIOs) for Cellular Imaging: More Bang for the Buck. In: Bulte JM, Modo MJ, editors. Nanoparticles in Biomedical Imaging: Springer New York. pp. 141–161.
[15]  Ren G, Chen X, Dong F, Li W, Ren X, et al. (2012) Concise Review: Mesenchymal Stem Cells and Translational Medicine: Emerging Issues. Stem Cells Transl Med 1: 51–58. doi: 10.5966/sctm.2011-0019
[16]  Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nano 7: 779–786. doi: 10.1038/nnano.2012.207
[17]  Albanese A, Tang PS, Chan WCW (2012) The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu Rev Biomed Eng 14: 1–16. doi: 10.1146/annurev-bioeng-071811-150124
[18]  Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, et al. (2006) Interaction of Functionalized Superparamagnetic Iron Oxide Nanoparticles with Brain Structures. J Pharmacol Exp Ther 318: 108–116.
[19]  Rezwan K, Studart AR, V?r?s J, Gauckler LJ (2005) Change of ζ Potential of Biocompatible Colloidal Oxide Particles upon Adsorption of Bovine Serum Albumin and Lysozyme. J Phys Chem B 109: 14469–14474. doi: 10.1021/jp050528w
[20]  Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, et al. (2003) Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents. Radiology 228: 480–487. doi: 10.1148/radiol.2281020638
[21]  Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, et al. (2005) Cell Tagging with Clinically Approved Iron Oxides: Feasibility and Effect of Lipofection, Particle Size, and Surface Coating on Labeling Efficiency1. Radiology 235: 155–161. doi: 10.1148/radiol.2351040094
[22]  Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53: 329–338. doi: 10.1002/mrm.20342
[23]  Laurent S, Burtea C, Thirifays C, H?feli UO, Mahmoudi M (2012) Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision”. PLoS ONE 7: e29997. doi: 10.1371/journal.pone.0029997
[24]  Michael L, Florence L, Valentin-Adrian M, Marie-Geneviève B, Fran?ois G, et al. (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21: 395103. doi: 10.1088/0957-4484/21/39/395103
[25]  Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, et al. (2010) Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small 6: 2136–2145. doi: 10.1002/smll.201000763
[26]  Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, et al. (2004) MRI detection of single particles for cellular imaging. PNAS 101: 10901–10906. doi: 10.1073/pnas.0403918101
[27]  Grainger DW (2009) Nanotoxicity assessment: all small talk? Adv Drug Deliver Rev 61: 419–421. doi: 10.1016/j.addr.2009.04.003
[28]  Geraldes CFGC, Laurent S (2009) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol I 4: 1–23. doi: 10.1002/cmmi.265
[29]  Carroll MRJ, Woodward RC, House MJ, Teoh WY, Amal R, et al.. (2010) Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology. 21.
[30]  Laurent S, Forge D, Port M, Roch A, Robic C, et al. (2008) Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 108: 2064–2110. doi: 10.1021/cr068445e
[31]  Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F (2012) How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media & Molecular Imaging 7: 373–383. doi: 10.1002/cmmi.504
[32]  Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, et al. (2003) Cell internalization of anionic maghemite nanoparticles: Quantitative effect on magnetic resonance imaging. Magn Reson Med 49: 646–654. doi: 10.1002/mrm.10418
[33]  Simon G, Bauer J, Saborovski O, Fu Y, Corot C, et al. (2006) T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 16: 738–745. doi: 10.1007/s00330-005-0031-2
[34]  Klug G, Kampf T, Bloemer S, Bremicker J, Ziener CH, et al. (2010) Intracellular and extracellular T1 and T2 relaxivities of magneto-optical nanoparticles at experimental high fields. Magn Reson Med 64: 1607–1615. doi: 10.1002/mrm.22557
[35]  Rashidi H, Sottile V (2009) The chick embryo: hatching a model for contemporary biomedical research. BioEssays 31: 459–465. doi: 10.1002/bies.200800168
[36]  Boss A, Oppitz M, Wehrl HF, Rossi C, Feuerstein M, et al. (2008) Measurement of T1, T2, and magnetization transfer properties during embryonic development at 7 Tesla using the chicken model. J Magn Reson Im 28: 1510–1514. doi: 10.1002/jmri.21601

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133