In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future.
References
[1]
Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson's disease. Nature neuroscience 5 Suppl: 1058–1061. doi: 10.1038/nn941
[2]
Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson's disease. Lancet 2: 49. doi: 10.1016/s0140-6736(89)90291-2
[3]
Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson's disease frontal cortex. Brain research 1189: 215–218. doi: 10.1016/j.brainres.2007.10.061
[4]
Parker WD Jr, Swerdlow RH (1998) Mitochondrial dysfunction in idiopathic Parkinson disease. American journal of human genetics 62: 758–762. doi: 10.1086/301812
[5]
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, et al. (1990) Mitochondrial complex I deficiency in Parkinson's disease. Journal of neurochemistry 54: 823–827. doi: 10.1111/j.1471-4159.1990.tb02325.x
[6]
Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson's disease and aging. Neurobiology of aging 25: 1273–1281. doi: 10.1016/j.neurobiolaging.2004.02.020
[7]
Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, et al. (2008) Mitochondrial function in Parkinson's disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 8: 219–228. doi: 10.1016/j.mito.2008.03.004
[8]
Swerdlow RH, Parks JK, Cassarino DS, Shilling AT, Bennett JP Jr, et al. (1999) Characterization of cybrid cell lines containing mtDNA from Huntington's disease patients. Biochemical and biophysical research communications 261: 701–704. doi: 10.1006/bbrc.1999.1095
Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyri?dinein mice. Science 224: 1451–1453. doi: 10.1126/science.6610213
[11]
Eberhardt O, Schulz JB (2003) Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease. Toxicology letters 139: 135–151. doi: 10.1016/s0378-4274(02)00428-9
[12]
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, et al. (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dine. Proceedings of the National Academy of Sciences of the United States of America 80: 4546–4550. doi: 10.1073/pnas.80.14.4546
[13]
Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, et al. (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry research 1: 249–254. doi: 10.1016/0165-1781(79)90006-4
[14]
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, et al. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature neuroscience 3: 1301–1306. doi: 10.1038/81834
[15]
Martinez TN, Greenamyre JT (2012) Toxin models of mitochondrial dysfunction in Parkinson's disease. Antioxidants & redox signaling 16: 920–934. doi: 10.1089/ars.2011.4033
[16]
Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyri?dineby monoamine oxidase inhibitors. Nature 311: 467–469. doi: 10.1038/311467a0
[17]
Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, et al. (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dine(MPTP) in monkeys. European journal of pharmacology 106: 209–210. doi: 10.1016/0014-2999(84)90700-3
[18]
Cao BY, Yang YP, Luo WF, Mao CJ, Han R, et al. (2010) Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. Journal of ethnopharmacology 131: 122–129. doi: 10.1016/j.jep.2010.06.009
[19]
Kong XC, Zhang D, Qian C, Liu GT, Bao XQ (2011) FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+). Brain research 1383: 99–107. doi: 10.1016/j.brainres.2011.01.093
[20]
Park SW, Lee CH, Lee JG, Kim LW, Shin BS, et al. (2011) Protective effects of atypical antipsychotic drugs against MPP(+)-induced oxidative stress in PC12 cells. Neuroscience research 69: 283–290. doi: 10.1016/j.neures.2011.01.004
[21]
Yurekli VA, Gurler S, Naziroglu M, Uguz AC, Koyuncuoglu HR (2013) Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cellular and molecular neurobiology 33: 205–212. doi: 10.1007/s10571-012-9886-3
[22]
Manyam BV, Sanchez-Ramos JR (1999) Traditional and complementary therapies in Parkinson's disease. Advances in neurology 80: 565–574.
[23]
Bae N, Ahn T, Chung S, Oh MS, Ko H, et al. (2011) The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease. Journal of ethnopharmacology 134: 313–322. doi: 10.1016/j.jep.2010.12.016
[24]
Doo AR, Kim SN, Park JY, Cho KH, Hong J, et al. (2010) Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. Journal of ethnopharmacology 131: 433–442. doi: 10.1016/j.jep.2010.07.008
[25]
Hashimoto R, Yu J, Koizumi H, Ouchi Y, Okabe T (2012) Ginsenoside Rb1 Prevents MPP(+)-Induced Apoptosis in PC12 Cells by Stimulating Estrogen Receptors with Consequent Activation of ERK1/2, Akt and Inhibition of SAPK/JNK, p38 MAPK. Evidence-based complementary and alternative medicine: eCAM 2012: 693717. doi: 10.1155/2012/693717
[26]
Li X, Ye X, Sun X, Liang Q, Tao L, et al. (2011) Salidroside protects against MPP(+)-induced apoptosis in PC12 cells by inhibiting the NO pathway. Brain research 1382: 9–18. doi: 10.1016/j.brainres.2011.01.015
[27]
Zhou J, Sun Y, Zhao X, Deng Z, Pu X (2013) 3-O-demethylswertipunicoside inhibits MPP(+)-induced oxidative stress and apoptosis in PC12 cells. Brain research 1508: 53–62. doi: 10.1016/j.brainres.2013.02.049
[28]
Chung V, Liu L, Bian Z, Zhao Z, Leuk Fong W, et al. (2006) Efficacy and safety of herbal medicines for idiopathic Parkinson's disease: a systematic review. Movement disorders: official journal of the Movement Disorder Society 21: 1709–1715. doi: 10.1002/mds.21008
Katoh-Semba R, Kitajima S, Yamazaki Y, Sano M (1987) Neuritic growth from a new subline of PC12 pheochromocytoma cells: cyclic AMP mimics the action of nerve growth factor. Journal of neuroscience research 17: 36–44. doi: 10.1002/jnr.490170106
[31]
Yao S, Li Y, Kong L (2006) Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography. Journal of chromatography A 1115: 64–71. doi: 10.1016/j.chroma.2006.02.071
[32]
Mielke K, Herdegen T (2000) JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Progress in neurobiology 61: 45–60. doi: 10.1016/s0301-0082(99)00042-8
[33]
Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson's disease: signals for neuronal degradation. Annals of neurology 53 Suppl 3: S61–70 discussion S70–62. doi: 10.1002/ana.10489
[34]
Voss T, Ravina B (2008) Neuroprotection in Parkinson's disease: myth or reality? Current neurology and neuroscience reports 8: 304–309. doi: 10.1007/s11910-008-0047-5
[35]
Kim SY, Kim MY, Mo JS, Park JW, Park HS (2007) SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling. Neuroscience letters 413: 132–136. doi: 10.1016/j.neulet.2006.11.074
[36]
Nishimura K, Osawa T, Watanabe K (2011) Evaluation of oxygen radical absorbance capacity in kampo medicine. Evidence-based complementary and alternative medicine: eCAM 2011: 812163. doi: 10.1093/ecam/nen082
[37]
Iizuka A, Iijima OT, Kondo K, Matsumoto A, Itakura H, et al. (2000) Antioxidative effects of Choi-oki-to and its ability to inhibit the progression of atheroma in KHC rabbits. Journal of atherosclerosis and thrombosis 6: 49–54. doi: 10.5551/jat1994.6.49
[38]
Kobayashi K, Funayama N, Suzuki R, Yoshizaki F (2002) Survey of the influence of Chinese medicinal prescriptions on amylase activity in mouse plasma and gastrointestinal tube. Biological & pharmaceutical bulletin 25: 1108–1111. doi: 10.1248/bpb.25.1108
[39]
Oi H, Matsuura D, Miyake M, Ueno M, Takai I, et al. (2002) Identification in traditional herbal medications and confirmation by synthesis of factors that inhibit cholera toxin-induced fluid accumulation. Proceedings of the National Academy of Sciences of the United States of America 99: 3042–3046. doi: 10.1073/pnas.052709499
[40]
Hasegawa A, Kawaguchi Y, Nakasa H, Nakamura H, Ohmori S, et al. (2002) Effects of Kampo extracts on drug metabolism in rat liver microsomes: Rhei Rhizoma extract and Glycyrrhizae Radix extract inhibit drug oxidation. Japanese journal of pharmacology 89: 164–170. doi: 10.1254/jjp.89.164
[41]
Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytotherapy research: PTR 22: 709–724. doi: 10.1002/ptr.2362
[42]
Hatano T, Yasuhara T, Fukuda T, Noro T, Okuda T (1989) Phenolic constituents of licorice. II. Structures of licopyranocoumarin, licoarylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. Chemical & pharmaceutical bulletin 37: 3005–3009. doi: 10.1248/cpb.37.3005
[43]
Tsukamoto S, Aburatani M, Yoshida T, Yamashita Y, El-Beih AA, et al. (2005) CYP3A4 inhibitors isolated from Licorice. Biological & pharmaceutical bulletin 28: 2000–2002. doi: 10.1248/bpb.28.2000
[44]
Kasai A, Hiramatsu N, Hayakawa K, Yao J, Kitamura M (2008) Blockade of the dioxin pathway by herbal medicine Formula Bupleuri Minor: identification of active entities for suppression of AhR activation. Biological & pharmaceutical bulletin 31: 838–846. doi: 10.1248/bpb.31.838
[45]
Tao WW, Duan JA, Yang NY, Tang YP, Liu MZ, et al. (2012) Antithrombotic phenolic compounds from Glycyrrhiza uralensis. Fitoterapia 83: 422–425. doi: 10.1016/j.fitote.2011.12.010
[46]
Seaton TA, Cooper JM, Schapira AH (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain research 777: 110–118.
[47]
Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. Journal of neurochemistry 69: 1196–1203. doi: 10.1046/j.1471-4159.1997.69031196.x
[48]
Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, et al. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. Journal of neurochemistry 52: 381–389. doi: 10.1111/j.1471-4159.1989.tb09133.x
[49]
Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. Journal of neurochemistry 70: 268–275. doi: 10.1046/j.1471-4159.1998.70010268.x
[50]
Song JX, Sze SC, Ng TB, Lee CK, Leung GP, et al. (2012) Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? Journal of ethnopharmacology 139: 698–711. doi: 10.1016/j.jep.2011.12.030
[51]
Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain research Molecular brain research 134: 109–118. doi: 10.1016/j.molbrainres.2004.11.007
[52]
Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, et al. (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. Journal of neurochemistry 109: 1427–1439. doi: 10.1111/j.1471-4159.2009.06074.x
[53]
Saporito MS, Brown EM, Miller MS, Carswell S (1999) CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. The Journal of pharmacology and experimental therapeutics 288: 421–427.
[54]
Xia XG, Harding T, Weller M, Bieneman A, Uney JB, et al. (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 98: 10433–10438. doi: 10.1073/pnas.181182298
[55]
Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, et al. (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 101: 665–670. doi: 10.1073/pnas.0307453101
[56]
Park SW, Kim SH, Park KH, Kim SD, Kim JY, et al. (2004) Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson's disease. Neuroscience letters 363: 243–246. doi: 10.1016/j.neulet.2004.03.072
[57]
Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, et al. (2004) Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicological sciences: an official journal of the Society of Toxicology 79: 137–146. doi: 10.1093/toxsci/kfh089
[58]
Klintworth H, Newhouse K, Li T, Choi WS, Faigle R, et al. (2007) Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis. Toxicological sciences: an official journal of the Society of Toxicology 97: 149–162. doi: 10.1093/toxsci/kfm029
[59]
Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, et al. (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. The Journal of biological chemistry 283: 13565–13577. doi: 10.1074/jbc.m708916200
[60]
Lin X, Wang YJ, Li Q, Hou YY, Hong MH, et al. (2009) Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. The FEBS journal 276: 2022–2036. doi: 10.1111/j.1742-4658.2009.06938.x
[61]
Ng TB, Liu F, Wang ZT (2000) Antioxidative activity of natural products from plants. Life sciences 66: 709–723. doi: 10.1016/s0024-3205(99)00642-6
[62]
Fernandez-Puntero B, Barroso I, Iglesias I, Benedi J, Villar A (2001) Antioxidant activity of Fraxetin: in vivo and ex vivo parameters in normal situation versus induced stress. Biological & pharmaceutical bulletin 24: 777–784. doi: 10.1248/bpb.24.777
[63]
Vladimirov Iu A, Parfenov EA, Epanchintseva OM, Smirnov LD (1991) [The antiradical activity of coumarin reductones]. Biulleten' eksperimental'noi biologii i meditsiny 112: 472–475.
[64]
Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxidants & redox signaling 8: 1583–1596. doi: 10.1089/ars.2006.8.1583
[65]
Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson's disease. Journal of neural transmission Supplementum: 373–381. doi: 10.1007/978-3-211-45295-0_57
[66]
Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, et al. (2013) Mitochondria-targeted antioxidants for treatment of Parkinson's disease: Preclinical and clinical outcomes. Biochimica et biophysica acta. doi: 10.1016/j.bbadis.2013.09.007
[67]
Kawatani M, Uchi M, Simizu S, Osada H, Imoto M (2003) Transmembrane domain of Bcl-2 is required for inhibition of ceramide synthesis, but not cytochrome c release in the pathway of inostamycin-induced apoptosis. Experimental cell research 286: 57–66. doi: 10.1016/s0014-4827(03)00098-3
[68]
Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon MS, et al. (2002) Antioxidant activity of polyphenols in carob pods. Journal of agricultural and food chemistry 50: 373–377. doi: 10.1021/jf010938r