[1] | Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg 49: 28–32.
|
[2] | Griffin DE (2007) Alphaviruses In: Fields BN, Knipe DM, PM H, editors. Fields Virology. 5 ed.Philadelphia: Lippincott-Williams & Wilkins pp. 00–00.
|
[3] | Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
|
[4] | Bourai M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, et al. (2012) Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. J Virol 86: 3121–3134. doi: 10.1128/jvi.06390-11
|
[5] | Enserink M (2007) Infectious diseases. Chikungunya: no longer a third world disease. Science 318: 1860–1861. doi: 10.1126/science.318.5858.1860
|
[6] | Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708. doi: 10.1038/nature09546
|
[7] | Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712. doi: 10.1038/nature09555
|
[8] | Laakkonen P, Hyvonen M, Peranen J, Kaariainen L (1994) Expression of Semliki Forest virus nsP1-specific methyltransferase in insect cells and in Escherichia coli. J Virol 68: 7418–7425.
|
[9] | Sullivan CS, Pipas JM (2001) The virus-chaperone connection. Virology 287: 1–8. doi: 10.1006/viro.2001.1038
|
[10] | Sedger L, Ruby J (1994) Heat shock response to vaccinia virus infection. J Virol 68: 4685–4689.
|
[11] | Welch WJ (1993) How cells respond to stress. Sci Am 268: 56–64. doi: 10.1038/scientificamerican0593-56
|
[12] | Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be—molecular chaperones in protein degradation. Cell Mol Life Sci 64: 2525–2541. doi: 10.1007/s00018-007-7188-6
|
[13] | Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28: 51–65. doi: 10.1016/j.jchemneu.2003.08.007
|
[14] | McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7: 736–741. doi: 10.1038/ncb0805-736
|
[15] | Lewthwaite J, Skinner A, Henderson B (1998) Are molecular chaperones microbial virulence factors? Trends Microbiol 6: 426–428. doi: 10.1016/s0966-842x(98)01362-6
|
[16] | Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4: 519–527. doi: 10.1016/j.chom.2008.10.011
|
[17] | Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796. doi: 10.1101/gad.12.24.3788
|
[18] | Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496. doi: 10.1146/annurev.ge.27.120193.002253
|
[19] | Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257: 14949–14959.
|
[20] | Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, et al. (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16: 135–146.
|
[21] | Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, et al. (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25: 5015–5025. doi: 10.1038/sj.emboj.7601367
|
[22] | Zheng ZZ, Miao J, Zhao M, Tang M, Yeo AE, et al. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. J Gen Virol 91: 1728–1736. doi: 10.1099/vir.0.019323-0
|
[23] | Geller R, Vignuzzi M, Andino R, Frydman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21: 195–205. doi: 10.1101/gad.1505307
|
[24] | Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76: 1379–1390. doi: 10.1128/jvi.76.3.1379-1390.2002
|
[25] | Hu J, Anselmo D (2000) In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74: 11447–11455. doi: 10.1128/jvi.74.24.11447-11455.2000
|
[26] | Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A 93: 1060–1064. doi: 10.1073/pnas.93.3.1060
|
[27] | Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, et al. (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 391: 325–333. doi: 10.1016/j.virol.2009.06.044
|
[28] | Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, et al. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75. doi: 10.1016/s0092-8674(00)80314-1
|
[29] | Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, et al. (1997) Nucleotides and two functional states of hsp90. J Biol Chem 272: 8007–8012. doi: 10.1074/jbc.272.12.8007
|
[30] | Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, et al. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266. doi: 10.1021/jm980403y
|
[31] | Schulte TW, An WG, Neckers LM (1997) Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun 239: 655–659. doi: 10.1006/bbrc.1997.7527
|
[32] | Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323–348. doi: 10.1016/s0065-230x(06)95009-x
|
[33] | Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 Pt 2: 289–305. doi: 10.1042/0264-6021:3510289
|
[34] | Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97: 10832–10837. doi: 10.1073/pnas.170276797
|
[35] | Stewart S, Sundaram M, Zhang Y, Lee J, Han M, et al. (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19: 5523–5534.
|
[36] | Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91: 8324–8328. doi: 10.1073/pnas.91.18.8324
|
[37] | Rathore AP, Haystead T, Das PK, Merits A, Ng ML, et al. (2013) Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res 103C: 7–16. doi: 10.1016/j.antiviral.2013.12.010
|
[38] | Kumar A, Mamidi P, Das I, Nayak TK, Kumar S, et al. A novel 2006 Indian outbreak strain of chikungunya virus exhibits different pattern of infection as compared to prototype strain. PLoS One 9: e85714. doi: 10.1371/journal.pone.0085714
|
[39] | Chattopadhyay S, Kumar A, Mamidi P, Nayak TK, Das I, et al. Development and characterization of monoclonal antibody against non-structural protein-2 of Chikungunya virus and its application. J Virol Methods 199C: 86–94. doi: 10.1016/j.jviromet.2014.01.008
|
[40] | Chattopadhyay S, Weller SK (2006) DNA binding activity of the herpes simplex virus type 1 origin binding protein, UL9, can be modulated by sequences in the N terminus: correlation between transdominance and DNA binding. J Virol 80: 4491–4500. doi: 10.1128/jvi.80.9.4491-4500.2006
|
[41] | Parida MM, Santhosh SR, Dash PK, Tripathi NK, Lakshmi V, et al. (2007) Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol 45: 351–357. doi: 10.1128/jcm.01734-06
|
[42] | Yao JQ, Liu QH, Chen X, Yang Q, Xu ZY, et al. (2010) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells. J Biomed Sci 17: 30. doi: 10.1186/1423-0127-17-30
|
[43] | Chattopadhyay S, Weller SK (2007) Direct interaction between the N- and C-terminal portions of the herpes simplex virus type 1 origin binding protein UL9 implies the formation of a head-to-tail dimer. J Virol 81: 13659–13667. doi: 10.1128/jvi.01204-07
|
[44] | Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184: 39–51. doi: 10.1016/0022-1759(95)00072-i
|
[45] | Khan M, Dhanwani R, Patro IK, Rao PV, Parida MM (2011) Cellular IMPDH enzyme activity is a potential target for the inhibition of Chikungunya virus replication and virus induced apoptosis in cultured mammalian cells. Antiviral Res 89: 1–8. doi: 10.1016/j.antiviral.2010.10.009
|
[46] | Ludwig S, Pleschka S, Planz O, Wolff T (2006) Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol 8: 375–386. doi: 10.1111/j.1462-5822.2005.00678.x
|
[47] | Brenner BG, Wainberg Z (2001) Heat shock proteins: novel therapeutic tools for HIV-infection? Expert Opin Biol Ther 1: 67–77. doi: 10.1517/14712598.1.1.67
|
[48] | Creagh EM, Sheehan D, Cotter TG (2000) Heat shock proteins—modulators of apoptosis in tumour cells. Leukemia 14: 1161–1173. doi: 10.1038/sj.leu.2401841
|
[49] | Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79: 10740–10749. doi: 10.1128/jvi.79.16.10740-10749.2005
|
[50] | Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, et al. (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277: 45306–45314. doi: 10.1074/jbc.m206822200
|
[51] | Hu J, Flores D, Toft D, Wang X, Nguyen D (2004) Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 78: 13122–13131. doi: 10.1128/jvi.78.23.13122-13131.2004
|
[52] | Waxman L, Whitney M, Pollok BA, Kuo LC, Darke PL (2001) Host cell factor requirement for hepatitis C virus enzyme maturation. Proc Natl Acad Sci U S A 98: 13931–13935. doi: 10.1073/pnas.241510898
|
[53] | Dutta D, Chattopadhyay S, Bagchi P, Halder UC, Nandi S, et al. Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J Biol Chem 286: 20065–20077. doi: 10.1074/jbc.m111.231878
|
[54] | Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81: 1339–1349. doi: 10.1128/jvi.01917-06
|
[55] | Dittmar KD, Banach M, Galigniana MD, Pratt WB (1998) The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. J Biol Chem 273: 7358–7366. doi: 10.1074/jbc.273.13.7358
|
[56] | Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90: 7074–7078. doi: 10.1073/pnas.90.15.7074
|
[57] | Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17: 1395–1413. doi: 10.1038/sj.onc.1202174
|
[58] | Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277: 10346–10353. doi: 10.1074/jbc.m106736200
|
[59] | Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21: 1159–1166. doi: 10.1038/sj.onc.1205184
|
[60] | Blagosklonny MV (2002) Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16: 455–462. doi: 10.1038/sj.leu.2402415
|
[61] | Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188: 281–290. doi: 10.1002/jcp.1131
|
[62] | Ehrhardt C, Wolff T, Pleschka S, Planz O, Beermann W, et al. (2007) Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol 81: 3058–3067. doi: 10.1128/jvi.02082-06
|
[63] | Clippinger AJ, Maguire TC, Alwine JC The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J Virol 85: 3930–3939. doi: 10.1128/jvi.01913-10
|
[64] | Das PK, Merits A, Lulla A (2014) Functional cross-talk between distant domains of chikungunya virus non-structural protein 2 is decisive for its RNA-modulating activity. J Biol Chem 289: 5635–5653. doi: 10.1074/jbc.m113.503433
|
[65] | Karpe YA, Aher PP, Lole KS (2011) NTPase and 5′-RNA triphosphatase activities of Chikungunya virus nsP2 protein. PLoS One 6: e22336. doi: 10.1371/journal.pone.0022336
|
[66] | Pastorino BA, Peyrefitte CN, Almeras L, Grandadam M, Rolland D, et al. (2008) Expression and biochemical characterization of nsP2 cysteine protease of Chikungunya virus. Virus Res 131: 293–298. doi: 10.1016/j.virusres.2007.09.009
|
[67] | Peranen J, Rikkonen M, Liljestrom P, Kaariainen L (1990) Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64: 1888–1896. doi: 10.1016/0042-6822(92)90570-f
|
[68] | Garmashova N, Gorchakov R, Frolova E, Frolov I (2006) Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 80: 5686–5696. doi: 10.1128/jvi.02739-05
|
[69] | Fros JJ, van der Maten E, Vlak JM, Pijlman GP (2013) The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. J Virol 87: 10394–10400. doi: 10.1128/jvi.00884-13
|