全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Heat Shock Protein 90 Positively Regulates Chikungunya Virus Replication by Stabilizing Viral Non-Structural Protein nsP2 during Infection

DOI: 10.1371/journal.pone.0100531

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies. Methods and Findings In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06). Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA) can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. Conclusion Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future.

References

[1]  Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg 49: 28–32.
[2]  Griffin DE (2007) Alphaviruses In: Fields BN, Knipe DM, PM H, editors. Fields Virology. 5 ed.Philadelphia: Lippincott-Williams & Wilkins pp. 00–00.
[3]  Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
[4]  Bourai M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, et al. (2012) Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. J Virol 86: 3121–3134. doi: 10.1128/jvi.06390-11
[5]  Enserink M (2007) Infectious diseases. Chikungunya: no longer a third world disease. Science 318: 1860–1861. doi: 10.1126/science.318.5858.1860
[6]  Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708. doi: 10.1038/nature09546
[7]  Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712. doi: 10.1038/nature09555
[8]  Laakkonen P, Hyvonen M, Peranen J, Kaariainen L (1994) Expression of Semliki Forest virus nsP1-specific methyltransferase in insect cells and in Escherichia coli. J Virol 68: 7418–7425.
[9]  Sullivan CS, Pipas JM (2001) The virus-chaperone connection. Virology 287: 1–8. doi: 10.1006/viro.2001.1038
[10]  Sedger L, Ruby J (1994) Heat shock response to vaccinia virus infection. J Virol 68: 4685–4689.
[11]  Welch WJ (1993) How cells respond to stress. Sci Am 268: 56–64. doi: 10.1038/scientificamerican0593-56
[12]  Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be—molecular chaperones in protein degradation. Cell Mol Life Sci 64: 2525–2541. doi: 10.1007/s00018-007-7188-6
[13]  Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28: 51–65. doi: 10.1016/j.jchemneu.2003.08.007
[14]  McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7: 736–741. doi: 10.1038/ncb0805-736
[15]  Lewthwaite J, Skinner A, Henderson B (1998) Are molecular chaperones microbial virulence factors? Trends Microbiol 6: 426–428. doi: 10.1016/s0966-842x(98)01362-6
[16]  Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4: 519–527. doi: 10.1016/j.chom.2008.10.011
[17]  Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796. doi: 10.1101/gad.12.24.3788
[18]  Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496. doi: 10.1146/annurev.ge.27.120193.002253
[19]  Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257: 14949–14959.
[20]  Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, et al. (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16: 135–146.
[21]  Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, et al. (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25: 5015–5025. doi: 10.1038/sj.emboj.7601367
[22]  Zheng ZZ, Miao J, Zhao M, Tang M, Yeo AE, et al. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. J Gen Virol 91: 1728–1736. doi: 10.1099/vir.0.019323-0
[23]  Geller R, Vignuzzi M, Andino R, Frydman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21: 195–205. doi: 10.1101/gad.1505307
[24]  Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76: 1379–1390. doi: 10.1128/jvi.76.3.1379-1390.2002
[25]  Hu J, Anselmo D (2000) In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74: 11447–11455. doi: 10.1128/jvi.74.24.11447-11455.2000
[26]  Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A 93: 1060–1064. doi: 10.1073/pnas.93.3.1060
[27]  Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, et al. (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 391: 325–333. doi: 10.1016/j.virol.2009.06.044
[28]  Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, et al. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75. doi: 10.1016/s0092-8674(00)80314-1
[29]  Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, et al. (1997) Nucleotides and two functional states of hsp90. J Biol Chem 272: 8007–8012. doi: 10.1074/jbc.272.12.8007
[30]  Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, et al. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266. doi: 10.1021/jm980403y
[31]  Schulte TW, An WG, Neckers LM (1997) Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun 239: 655–659. doi: 10.1006/bbrc.1997.7527
[32]  Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323–348. doi: 10.1016/s0065-230x(06)95009-x
[33]  Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 Pt 2: 289–305. doi: 10.1042/0264-6021:3510289
[34]  Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97: 10832–10837. doi: 10.1073/pnas.170276797
[35]  Stewart S, Sundaram M, Zhang Y, Lee J, Han M, et al. (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19: 5523–5534.
[36]  Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91: 8324–8328. doi: 10.1073/pnas.91.18.8324
[37]  Rathore AP, Haystead T, Das PK, Merits A, Ng ML, et al. (2013) Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res 103C: 7–16. doi: 10.1016/j.antiviral.2013.12.010
[38]  Kumar A, Mamidi P, Das I, Nayak TK, Kumar S, et al. A novel 2006 Indian outbreak strain of chikungunya virus exhibits different pattern of infection as compared to prototype strain. PLoS One 9: e85714. doi: 10.1371/journal.pone.0085714
[39]  Chattopadhyay S, Kumar A, Mamidi P, Nayak TK, Das I, et al. Development and characterization of monoclonal antibody against non-structural protein-2 of Chikungunya virus and its application. J Virol Methods 199C: 86–94. doi: 10.1016/j.jviromet.2014.01.008
[40]  Chattopadhyay S, Weller SK (2006) DNA binding activity of the herpes simplex virus type 1 origin binding protein, UL9, can be modulated by sequences in the N terminus: correlation between transdominance and DNA binding. J Virol 80: 4491–4500. doi: 10.1128/jvi.80.9.4491-4500.2006
[41]  Parida MM, Santhosh SR, Dash PK, Tripathi NK, Lakshmi V, et al. (2007) Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol 45: 351–357. doi: 10.1128/jcm.01734-06
[42]  Yao JQ, Liu QH, Chen X, Yang Q, Xu ZY, et al. (2010) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells. J Biomed Sci 17: 30. doi: 10.1186/1423-0127-17-30
[43]  Chattopadhyay S, Weller SK (2007) Direct interaction between the N- and C-terminal portions of the herpes simplex virus type 1 origin binding protein UL9 implies the formation of a head-to-tail dimer. J Virol 81: 13659–13667. doi: 10.1128/jvi.01204-07
[44]  Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184: 39–51. doi: 10.1016/0022-1759(95)00072-i
[45]  Khan M, Dhanwani R, Patro IK, Rao PV, Parida MM (2011) Cellular IMPDH enzyme activity is a potential target for the inhibition of Chikungunya virus replication and virus induced apoptosis in cultured mammalian cells. Antiviral Res 89: 1–8. doi: 10.1016/j.antiviral.2010.10.009
[46]  Ludwig S, Pleschka S, Planz O, Wolff T (2006) Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol 8: 375–386. doi: 10.1111/j.1462-5822.2005.00678.x
[47]  Brenner BG, Wainberg Z (2001) Heat shock proteins: novel therapeutic tools for HIV-infection? Expert Opin Biol Ther 1: 67–77. doi: 10.1517/14712598.1.1.67
[48]  Creagh EM, Sheehan D, Cotter TG (2000) Heat shock proteins—modulators of apoptosis in tumour cells. Leukemia 14: 1161–1173. doi: 10.1038/sj.leu.2401841
[49]  Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79: 10740–10749. doi: 10.1128/jvi.79.16.10740-10749.2005
[50]  Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, et al. (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277: 45306–45314. doi: 10.1074/jbc.m206822200
[51]  Hu J, Flores D, Toft D, Wang X, Nguyen D (2004) Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 78: 13122–13131. doi: 10.1128/jvi.78.23.13122-13131.2004
[52]  Waxman L, Whitney M, Pollok BA, Kuo LC, Darke PL (2001) Host cell factor requirement for hepatitis C virus enzyme maturation. Proc Natl Acad Sci U S A 98: 13931–13935. doi: 10.1073/pnas.241510898
[53]  Dutta D, Chattopadhyay S, Bagchi P, Halder UC, Nandi S, et al. Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J Biol Chem 286: 20065–20077. doi: 10.1074/jbc.m111.231878
[54]  Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81: 1339–1349. doi: 10.1128/jvi.01917-06
[55]  Dittmar KD, Banach M, Galigniana MD, Pratt WB (1998) The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. J Biol Chem 273: 7358–7366. doi: 10.1074/jbc.273.13.7358
[56]  Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90: 7074–7078. doi: 10.1073/pnas.90.15.7074
[57]  Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17: 1395–1413. doi: 10.1038/sj.onc.1202174
[58]  Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277: 10346–10353. doi: 10.1074/jbc.m106736200
[59]  Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21: 1159–1166. doi: 10.1038/sj.onc.1205184
[60]  Blagosklonny MV (2002) Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16: 455–462. doi: 10.1038/sj.leu.2402415
[61]  Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188: 281–290. doi: 10.1002/jcp.1131
[62]  Ehrhardt C, Wolff T, Pleschka S, Planz O, Beermann W, et al. (2007) Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol 81: 3058–3067. doi: 10.1128/jvi.02082-06
[63]  Clippinger AJ, Maguire TC, Alwine JC The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J Virol 85: 3930–3939. doi: 10.1128/jvi.01913-10
[64]  Das PK, Merits A, Lulla A (2014) Functional cross-talk between distant domains of chikungunya virus non-structural protein 2 is decisive for its RNA-modulating activity. J Biol Chem 289: 5635–5653. doi: 10.1074/jbc.m113.503433
[65]  Karpe YA, Aher PP, Lole KS (2011) NTPase and 5′-RNA triphosphatase activities of Chikungunya virus nsP2 protein. PLoS One 6: e22336. doi: 10.1371/journal.pone.0022336
[66]  Pastorino BA, Peyrefitte CN, Almeras L, Grandadam M, Rolland D, et al. (2008) Expression and biochemical characterization of nsP2 cysteine protease of Chikungunya virus. Virus Res 131: 293–298. doi: 10.1016/j.virusres.2007.09.009
[67]  Peranen J, Rikkonen M, Liljestrom P, Kaariainen L (1990) Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64: 1888–1896. doi: 10.1016/0042-6822(92)90570-f
[68]  Garmashova N, Gorchakov R, Frolova E, Frolov I (2006) Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 80: 5686–5696. doi: 10.1128/jvi.02739-05
[69]  Fros JJ, van der Maten E, Vlak JM, Pijlman GP (2013) The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. J Virol 87: 10394–10400. doi: 10.1128/jvi.00884-13

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133