全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Chimeric Avidin – NMR Structure and Dynamics of a 56 kDa Homotetrameric Thermostable Protein

DOI: 10.1371/journal.pone.0100564

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chimeric avidin (ChiAVD) is a product of rational protein engineering remarkably resistant to heat and harsh conditions. In quest of the fundamentals behind factors affecting stability we have elucidated the solution NMR spectroscopic structure of the biotin–bound form of ChiAVD and characterized the protein dynamics through 15N relaxation and hydrogen/deuterium (H/D) exchange of this and the biotin–free form. To surmount the challenges arising from the very large size of the protein for NMR spectroscopy, we took advantage of its high thermostability. Conventional triple resonance experiments for fully protonated proteins combined with methyl–detection optimized experiments acquired at 58°C were adequate for the structure determination of this 56 kDa protein. The model–free parameters derived from the 15N relaxation data reveal a remarkably rigid protein at 58°C in both the biotin–bound and the free forms. The H/D exchange experiments indicate a notable increase in hydrogen protection upon biotin binding.

References

[1]  Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: Principles and applications in biotechnology. Clin Chem 37: 625–636.
[2]  Wilchek M, Bayer EA (1999) Editorial. Biomol Eng 16: 1–4.
[3]  Laitinen OH, Nordlund HR, Hyt?nen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25: 269–277. doi: 10.1016/j.tibtech.2007.04.001
[4]  Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A 90: 5076–5080. doi: 10.1073/pnas.90.11.5076
[5]  Sano T, Cantor CR (1995) Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin. Proc Natl Acad Sci U S A 92: 3180–3184. doi: 10.1073/pnas.92.8.3180
[6]  Gonzalez M, Argarana CE, Fidelio GD (1999) Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 16: 67–72. doi: 10.1016/s1050-3862(99)00041-8
[7]  Hyt?nen VP, M??tt? JA, Nyholm TK, Livnah O, Eisenberg-Domovich Y, et al. (2005) Design and construction of highly stable, protease-resistant chimeric avidins. J Biol Chem 280: 10228–10233. doi: 10.1074/jbc.m414196200
[8]  M??tt? JA, Eisenberg-Domovich Y, Nordlund HR, Hayouka R, Kulomaa MS, et al. (2011) Chimeric avidin shows stability against harsh chemical conditions–biochemical analysis and 3D structure. Biotechnol Bioeng 108: 481–490. doi: 10.1002/bit.22962
[9]  Eisenberg-Domovich Y, Hyt?nen VP, Wilchek M, Bayer EA, Kulomaa MS, et al. (2005) High-resolution crystal structure of an avidin-related protein: Insight into high-affinity biotin binding and protein stability. Acta Crystallogr D Biol Crystallogr 61: 528–538. doi: 10.1107/s0907444905003914
[10]  Hyt?nen VP, Nyholm TK, Pentik?inen OT, Vaarno J, Porkka EJ, et al. (2004) Chicken avidin-related protein 4/5 shows superior thermal stability when compared with avidin while retaining high affinity to biotin. J Biol Chem 279: 9337–9343. doi: 10.1074/jbc.m310989200
[11]  Laitinen OH, Hyt?nen VP, Ahlroth MK, Pentik?inen OT, Gallagher C, et al. (2002) Chicken avidin-related proteins show altered biotin-binding and physico-chemical properties as compared with avidin. Biochem J 363: 609–617. doi: 10.1042/0264-6021:3630609
[12]  Heikkinen JJ, Kivim?ki L, M??tt? JA, M?kel? I, Hakalahti L, et al. (2011) Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates. Colloids Surf B Biointerfaces 87: 409–414. doi: 10.1016/j.colsurfb.2011.05.052
[13]  Heikkinen JJ, Riihim?ki TA, M??tt? JA, Suomela SE, Kantomaa J, et al. (2011) Covalent biofunctionalization of cellulose acetate with thermostable chimeric avidin. ACS Appl Mater Interfaces 3: 2240–2245. doi: 10.1021/am200272u
[14]  Würtz P, Hellman M, Tossavainen H, Permi P (2006) Towards unambiguous assignment of methyl-containing residues by double and triple sensitivity-enhanced HCCmHm-TOCSY experiments. J Biomol NMR 36: 13–26. doi: 10.1007/s10858-006-9056-3
[15]  Torchia DA (2011) Dynamics of biomolecules from picoseconds to seconds at atomic resolution. J Magn Reson 212: 1–10. doi: 10.1016/j.jmr.2011.07.010
[16]  Tossavainen H, Helppolainen SH, M??tt? JA, Pihlajamaa T, Hyt?nen VP, et al. (2013) Resonance assignments of the 56 kDa chimeric avidin in the biotin-bound and free forms. Biomol NMR Assign 7: 35–38. doi: 10.1007/s12104-012-9371-4
[17]  López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128: 13112–13122. doi: 10.1021/ja061136l
[18]  Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302. doi: 10.1007/s10858-007-9166-6
[19]  Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The xplor-NIH NMR molecular structure determination package. J Magn Reson 160: 65–73. doi: 10.1016/s1090-7807(02)00014-9
[20]  Case DA, Cheatham ITE, Darden T, Gohlke H, Luo R, et al. (2005) The amber biomolecular simulation programs. J Computat Chem 26: 1668–1688. doi: 10.1002/jcc.20290
[21]  Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. doi: 10.1002/jcc.20084
[22]  Tjandra N, Wingfield P, Stahl S, Bax A (1996) Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8: 273–284. doi: 10.1007/bf00410326
[23]  Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16: 23–28. doi: 10.1023/a:1008305808620
[24]  Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17: 75–86. doi: 10.1002/prot.340170110
[25]  Connelly GP, Bai Y, Jeng M-F, Englander SW (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17: 87–92. doi: 10.1002/prot.340170111
[26]  M?ntylahti S, Koskela O, Jiang P, Permi P (2010) MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger proteins: Application to a 557-residue IgFLNa16-21. J Biomol NMR 47: 183–194. doi: 10.1007/s10858-010-9422-z
[27]  Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
[28]  Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: An automated pipeline for the setup of poisson-boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–W667. doi: 10.1093/nar/gkh381
[29]  Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–W525. doi: 10.1093/nar/gkm276
[30]  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
[31]  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781–1802. doi: 10.1002/jcc.20289
[32]  Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14: : 33–8, 27–8.
[33]  Hyt?nen VP, Laitinen OH, Airenne TT, Kidron H, Meltola NJ, et al. (2004) Efficient production of active chicken avidin using a bacterial signal peptide in escherichia coli. Biochem J 384: 385–390. doi: 10.1042/bj20041114
[34]  Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, leu, ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13: 369–374.
[35]  Laitinen OH, Marttila AT, Airenne KJ, Kulik T, Livnah O, et al. (2001) Biotin induces tetramerization of a recombinant monomeric avidin. A model for protein-protein interactions. J Biol Chem 276: 8219–8224. doi: 10.1074/jbc.m007930200
[36]  Hyt?nen VP, Nordlund HR, H?rh? J, Nyholm TK, Hyre DE, et al. (2005) Dual-affinity avidin molecules. Proteins 61: 597–607. doi: 10.1002/prot.20604
[37]  McCoy MA, Mueller L (1992) Selective shaped pulse decoupling in NMR: homonuclear [carbon-13]carbonyl decoupling. J Am Chem Soc 114: 2108–2112. doi: 10.1021/ja00032a026
[38]  Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114: 10663–10665. doi: 10.1021/ja00052a088
[39]  Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson 85: 393–399. doi: 10.1016/0022-2364(89)90152-2
[40]  Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. J Am Chem Soc 104: 4546–4559. doi: 10.1021/ja00381a009
[41]  Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. analysis of experimental results. J Am Chem Soc 104: 4559–4570. doi: 10.1021/ja00381a010
[42]  Savard P-Y, Gagné SM (2006) Backbone dynamics of TEM-1 determined by NMR: Evidence for a highly ordered protein. Biochemistry 45: 11414–11424. doi: 10.1021/bi060414q
[43]  Morin S, Gagné SM (2009) NMR dynamics of PSE-4 β-lactamase: An interplay of ps-ns order and μs-ms motions in the active site. Biophys J 96: 4681–4691. doi: 10.1016/j.bpj.2009.02.068
[44]  Seewald MJ, Pichumani K, Stowell C, Tibbals BV, Regan L, et al. (2000) The role of backbone conformational heat capacity in protein stability: Temperature dependent dynamics of the B1 domain of streptococcal protein G. Protein Sci 9: 1177–1193. doi: 10.1110/ps.9.6.1177
[45]  Spyracopoulos L, Lavigne P, Crump MP, Gagné SM, Kay CM, et al. (2001) Temperature dependence of dynamics and thermodynamics of the regulatory domain of human cardiac troponin C. Biochemistry. 40: 12541–12551. doi: 10.1021/bi010903k
[46]  Chang SL, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Reson 174: 43–53. doi: 10.1016/j.jmr.2005.01.008
[47]  Pawley NH, Koide S, Nicholson LK (2002) Backbone dynamics and thermodynamics of borrelia outer surface protein A. J Mol Biol. 324: 991–1002. doi: 10.1016/s0022-2836(02)01146-4
[48]  Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65: 1–43. doi: 10.1128/mmbr.65.1.1-43.2001
[49]  Wang T, Cai S, Zuiderweg ER (2003) Temperature dependence of anisotropic protein backbone dynamics. J Am Chem Soc 125: 8639–8643. doi: 10.1021/ja034077+
[50]  Akke M, Bruschweiler R, Palmer AG 3rd (1993) NMR order parameters and free energy: An analytical approach and its application to cooperative calcium(2+) binding by calbindin D9k. J Am Chem Soc 115: 9832–9833. doi: 10.1021/ja00074a073
[51]  Yang D, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: Application to protein folding. J Mol Biol 263: 369–382. doi: 10.1006/jmbi.1996.0581
[52]  Skelton NJ, K?rdel J, Akke M, Chazin WJ (1992) Nuclear magnetic resonance studies of the internal dynamics in apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. the rates of amide proton exchange with solvent. J Mol Biol 227: 1100–1117. doi: 10.1016/0022-2836(92)90524-n
[53]  Williams DH, Zhou M, Stephens E (2006) Ligand binding energy and enzyme efficiency from reductions in protein dynamics. J Mol Biol 355: 760–767. doi: 10.1016/j.jmb.2005.11.015
[54]  Celej MS, Montich GG, Fidelio GD (2004) Conformational flexibility of avidin: The influence of biotin binding. Biochem Biophys Res Commun 325: 922–927. doi: 10.1016/j.bbrc.2004.12.006
[55]  Hyt?nen VP, M??tt? JA, Kidron H, Halling KK, H?rh? J, et al. (2005) Avidin related protein 2 shows unique structural and functional features among the avidin protein family. BMC Biotechnol 5: 28.
[56]  Laitinen OH, Hyt?nen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63: 2992–3017. doi: 10.1007/s00018-006-6288-z
[57]  Chivers CE, Crozat E, Chu C, Moy VT, Sherratt D, et al. (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7: 391–393. doi: 10.1038/nmeth.1450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133