[1] | Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: Principles and applications in biotechnology. Clin Chem 37: 625–636.
|
[2] | Wilchek M, Bayer EA (1999) Editorial. Biomol Eng 16: 1–4.
|
[3] | Laitinen OH, Nordlund HR, Hyt?nen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25: 269–277. doi: 10.1016/j.tibtech.2007.04.001
|
[4] | Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A 90: 5076–5080. doi: 10.1073/pnas.90.11.5076
|
[5] | Sano T, Cantor CR (1995) Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin. Proc Natl Acad Sci U S A 92: 3180–3184. doi: 10.1073/pnas.92.8.3180
|
[6] | Gonzalez M, Argarana CE, Fidelio GD (1999) Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 16: 67–72. doi: 10.1016/s1050-3862(99)00041-8
|
[7] | Hyt?nen VP, M??tt? JA, Nyholm TK, Livnah O, Eisenberg-Domovich Y, et al. (2005) Design and construction of highly stable, protease-resistant chimeric avidins. J Biol Chem 280: 10228–10233. doi: 10.1074/jbc.m414196200
|
[8] | M??tt? JA, Eisenberg-Domovich Y, Nordlund HR, Hayouka R, Kulomaa MS, et al. (2011) Chimeric avidin shows stability against harsh chemical conditions–biochemical analysis and 3D structure. Biotechnol Bioeng 108: 481–490. doi: 10.1002/bit.22962
|
[9] | Eisenberg-Domovich Y, Hyt?nen VP, Wilchek M, Bayer EA, Kulomaa MS, et al. (2005) High-resolution crystal structure of an avidin-related protein: Insight into high-affinity biotin binding and protein stability. Acta Crystallogr D Biol Crystallogr 61: 528–538. doi: 10.1107/s0907444905003914
|
[10] | Hyt?nen VP, Nyholm TK, Pentik?inen OT, Vaarno J, Porkka EJ, et al. (2004) Chicken avidin-related protein 4/5 shows superior thermal stability when compared with avidin while retaining high affinity to biotin. J Biol Chem 279: 9337–9343. doi: 10.1074/jbc.m310989200
|
[11] | Laitinen OH, Hyt?nen VP, Ahlroth MK, Pentik?inen OT, Gallagher C, et al. (2002) Chicken avidin-related proteins show altered biotin-binding and physico-chemical properties as compared with avidin. Biochem J 363: 609–617. doi: 10.1042/0264-6021:3630609
|
[12] | Heikkinen JJ, Kivim?ki L, M??tt? JA, M?kel? I, Hakalahti L, et al. (2011) Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates. Colloids Surf B Biointerfaces 87: 409–414. doi: 10.1016/j.colsurfb.2011.05.052
|
[13] | Heikkinen JJ, Riihim?ki TA, M??tt? JA, Suomela SE, Kantomaa J, et al. (2011) Covalent biofunctionalization of cellulose acetate with thermostable chimeric avidin. ACS Appl Mater Interfaces 3: 2240–2245. doi: 10.1021/am200272u
|
[14] | Würtz P, Hellman M, Tossavainen H, Permi P (2006) Towards unambiguous assignment of methyl-containing residues by double and triple sensitivity-enhanced HCCmHm-TOCSY experiments. J Biomol NMR 36: 13–26. doi: 10.1007/s10858-006-9056-3
|
[15] | Torchia DA (2011) Dynamics of biomolecules from picoseconds to seconds at atomic resolution. J Magn Reson 212: 1–10. doi: 10.1016/j.jmr.2011.07.010
|
[16] | Tossavainen H, Helppolainen SH, M??tt? JA, Pihlajamaa T, Hyt?nen VP, et al. (2013) Resonance assignments of the 56 kDa chimeric avidin in the biotin-bound and free forms. Biomol NMR Assign 7: 35–38. doi: 10.1007/s12104-012-9371-4
|
[17] | López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128: 13112–13122. doi: 10.1021/ja061136l
|
[18] | Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302. doi: 10.1007/s10858-007-9166-6
|
[19] | Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The xplor-NIH NMR molecular structure determination package. J Magn Reson 160: 65–73. doi: 10.1016/s1090-7807(02)00014-9
|
[20] | Case DA, Cheatham ITE, Darden T, Gohlke H, Luo R, et al. (2005) The amber biomolecular simulation programs. J Computat Chem 26: 1668–1688. doi: 10.1002/jcc.20290
|
[21] | Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. doi: 10.1002/jcc.20084
|
[22] | Tjandra N, Wingfield P, Stahl S, Bax A (1996) Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8: 273–284. doi: 10.1007/bf00410326
|
[23] | Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16: 23–28. doi: 10.1023/a:1008305808620
|
[24] | Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17: 75–86. doi: 10.1002/prot.340170110
|
[25] | Connelly GP, Bai Y, Jeng M-F, Englander SW (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17: 87–92. doi: 10.1002/prot.340170111
|
[26] | M?ntylahti S, Koskela O, Jiang P, Permi P (2010) MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger proteins: Application to a 557-residue IgFLNa16-21. J Biomol NMR 47: 183–194. doi: 10.1007/s10858-010-9422-z
|
[27] | Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
|
[28] | Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: An automated pipeline for the setup of poisson-boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–W667. doi: 10.1093/nar/gkh381
|
[29] | Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–W525. doi: 10.1093/nar/gkm276
|
[30] | Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
|
[31] | Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781–1802. doi: 10.1002/jcc.20289
|
[32] | Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14: : 33–8, 27–8.
|
[33] | Hyt?nen VP, Laitinen OH, Airenne TT, Kidron H, Meltola NJ, et al. (2004) Efficient production of active chicken avidin using a bacterial signal peptide in escherichia coli. Biochem J 384: 385–390. doi: 10.1042/bj20041114
|
[34] | Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, leu, ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13: 369–374.
|
[35] | Laitinen OH, Marttila AT, Airenne KJ, Kulik T, Livnah O, et al. (2001) Biotin induces tetramerization of a recombinant monomeric avidin. A model for protein-protein interactions. J Biol Chem 276: 8219–8224. doi: 10.1074/jbc.m007930200
|
[36] | Hyt?nen VP, Nordlund HR, H?rh? J, Nyholm TK, Hyre DE, et al. (2005) Dual-affinity avidin molecules. Proteins 61: 597–607. doi: 10.1002/prot.20604
|
[37] | McCoy MA, Mueller L (1992) Selective shaped pulse decoupling in NMR: homonuclear [carbon-13]carbonyl decoupling. J Am Chem Soc 114: 2108–2112. doi: 10.1021/ja00032a026
|
[38] | Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114: 10663–10665. doi: 10.1021/ja00052a088
|
[39] | Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson 85: 393–399. doi: 10.1016/0022-2364(89)90152-2
|
[40] | Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. J Am Chem Soc 104: 4546–4559. doi: 10.1021/ja00381a009
|
[41] | Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. analysis of experimental results. J Am Chem Soc 104: 4559–4570. doi: 10.1021/ja00381a010
|
[42] | Savard P-Y, Gagné SM (2006) Backbone dynamics of TEM-1 determined by NMR: Evidence for a highly ordered protein. Biochemistry 45: 11414–11424. doi: 10.1021/bi060414q
|
[43] | Morin S, Gagné SM (2009) NMR dynamics of PSE-4 β-lactamase: An interplay of ps-ns order and μs-ms motions in the active site. Biophys J 96: 4681–4691. doi: 10.1016/j.bpj.2009.02.068
|
[44] | Seewald MJ, Pichumani K, Stowell C, Tibbals BV, Regan L, et al. (2000) The role of backbone conformational heat capacity in protein stability: Temperature dependent dynamics of the B1 domain of streptococcal protein G. Protein Sci 9: 1177–1193. doi: 10.1110/ps.9.6.1177
|
[45] | Spyracopoulos L, Lavigne P, Crump MP, Gagné SM, Kay CM, et al. (2001) Temperature dependence of dynamics and thermodynamics of the regulatory domain of human cardiac troponin C. Biochemistry. 40: 12541–12551. doi: 10.1021/bi010903k
|
[46] | Chang SL, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Reson 174: 43–53. doi: 10.1016/j.jmr.2005.01.008
|
[47] | Pawley NH, Koide S, Nicholson LK (2002) Backbone dynamics and thermodynamics of borrelia outer surface protein A. J Mol Biol. 324: 991–1002. doi: 10.1016/s0022-2836(02)01146-4
|
[48] | Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65: 1–43. doi: 10.1128/mmbr.65.1.1-43.2001
|
[49] | Wang T, Cai S, Zuiderweg ER (2003) Temperature dependence of anisotropic protein backbone dynamics. J Am Chem Soc 125: 8639–8643. doi: 10.1021/ja034077+
|
[50] | Akke M, Bruschweiler R, Palmer AG 3rd (1993) NMR order parameters and free energy: An analytical approach and its application to cooperative calcium(2+) binding by calbindin D9k. J Am Chem Soc 115: 9832–9833. doi: 10.1021/ja00074a073
|
[51] | Yang D, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: Application to protein folding. J Mol Biol 263: 369–382. doi: 10.1006/jmbi.1996.0581
|
[52] | Skelton NJ, K?rdel J, Akke M, Chazin WJ (1992) Nuclear magnetic resonance studies of the internal dynamics in apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. the rates of amide proton exchange with solvent. J Mol Biol 227: 1100–1117. doi: 10.1016/0022-2836(92)90524-n
|
[53] | Williams DH, Zhou M, Stephens E (2006) Ligand binding energy and enzyme efficiency from reductions in protein dynamics. J Mol Biol 355: 760–767. doi: 10.1016/j.jmb.2005.11.015
|
[54] | Celej MS, Montich GG, Fidelio GD (2004) Conformational flexibility of avidin: The influence of biotin binding. Biochem Biophys Res Commun 325: 922–927. doi: 10.1016/j.bbrc.2004.12.006
|
[55] | Hyt?nen VP, M??tt? JA, Kidron H, Halling KK, H?rh? J, et al. (2005) Avidin related protein 2 shows unique structural and functional features among the avidin protein family. BMC Biotechnol 5: 28.
|
[56] | Laitinen OH, Hyt?nen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63: 2992–3017. doi: 10.1007/s00018-006-6288-z
|
[57] | Chivers CE, Crozat E, Chu C, Moy VT, Sherratt D, et al. (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7: 391–393. doi: 10.1038/nmeth.1450
|