全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Tissue Transglutaminase in Marmoset Experimental Multiple Sclerosis: Discrepancy between White and Grey Matter

DOI: 10.1371/journal.pone.0100574

Full-Text   Cite this paper   Add to My Lib

Abstract:

Infiltration of leukocytes is a major pathological event in white matter lesion formation in the brain of multiple sclerosis (MS) patients. In grey matter lesions, less infiltration of these cells occur, but microglial activation is present. Thus far, the interaction of β-integrins with extracellular matrix proteins, e.g. fibronectin, is considered to be of importance for the influx of immune cells. Recent in vitro studies indicate a possible role for the enzyme tissue Transglutaminase (TG2) in mediating cell adhesion and migration. In the present study we questioned whether TG2 is present in white and grey matter lesions observed in the marmoset model for MS. To this end, immunohistochemical studies were performed. We observed that TG2, expressed by infiltrating monocytes in white matter lesions co-expressed β1-integrin and is located in close apposition to deposited fibronectin. These data suggest an important role for TG2 in the adhesion and migration of infiltrating monocytes during white matter lesion formation. Moreover, in grey matter lesions, TG2 is mainly present in microglial cells together with some β1-integrin, whereas fibronectin is absent in these lesions. These data imply an alternative role for microglial-derived TG2 in grey matter lesions, e.g. cell proliferation. Further research should clarify the functional role of TG2 in monocytes or microglial cells in MS lesion formation.

References

[1]  Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, et al. (1989) The natural history of multiple sclerosis: a geographically based study I. clinical course and disability. Brain 112: 133–146. doi: 10.1093/brain/112.1.133
[2]  Noseworthy JH, Lucchinetti CF, Rodriguez M, Weinshenker BG (2000) Multiple Sclerosis. The New England Journal of Medicine 343: 938–952. doi: 10.1056/nejm200009283431307
[3]  Engel C, Greim B, Zettl UK (2007) Diagnostics of cognitive dysfunctions in multiple sclerosis. Journal of Neurology 254 Suppl: II30–4. doi: 10.1007/s00415-007-2009-2
[4]  Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annual Review of Neuroscience 31: 247–269. doi: 10.1146/annurev.neuro.30.051606.094313
[5]  Korn T (2008) Pathophysiology of multiple sclerosis. Journal of Neurology 255 Suppl2–6. doi: 10.1007/s00415-008-6001-2
[6]  Stys PK, Zamponi GW, Van Minnen J, Geurts JJG (2012) Will the real multiple sclerosis please stand up? Nature Reviews Neuroscience 13: 507–514. doi: 10.1038/nrn3275
[7]  Hafler DA (2004) Multiple sclerosis. The Journal of Clinical Investigation 113: 788–794. doi: 10.1172/jci200421357
[8]  Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathology 17: 210–218. doi: 10.1111/j.1750-3639.2007.00064.x
[9]  Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clinical & Developmental Immunology 2013: 1–13. doi: 10.1155/2013/948976
[10]  Brosnan CF, Raine CS (2013) The astrocyte in multiple sclerosis revisited. Glia 61: 453–465. doi: 10.1002/glia.22443
[11]  Sriram S (2011) Role of glial cells in innate immunity and their role in CNS demyelination. Journal of Neuroimmunology 239: 13–20. doi: 10.1016/j.jneuroim.2011.08.012
[12]  Lassmann H (2014) Mechanisms of white matter damage in multiple sclerosis. Glia 00: 1–15. doi: 10.1002/glia.22597
[13]  Stadelmann C (2011) Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Current Opinion in Neurology 24: 224–229. doi: 10.1097/wco.0b013e328346056f
[14]  Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, et al. (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathologica 122: 155–170. doi: 10.1007/s00401-011-0840-0
[15]  Peterson JW, B? L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Annals of Neurology 50: 389–400. doi: 10.1002/ana.1123
[16]  Kooi E-J, Strijbis EMM, Van der Valk P, Geurts JJG (2012) Heterogeneity of cortical lesions in multiple sclerosis: clinical and pathologic implications. Neurology 79: 1369–1376. doi: 10.1212/wnl.0b013e31826c1b1c
[17]  B? L (2009) The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurologica Scandinavica 120: 51–57. doi: 10.1111/j.1600-0404.2009.01216.x
[18]  B? L, Vedeler CA, Nyland H, Trapp BD, M?rk SJ (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Multiple Sclerosis 9: 323–331. doi: 10.1191/1352458503ms917oa
[19]  Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathology 18: 86–95. doi: 10.1111/j.1750-3639.2007.00110.x
[20]  Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, et al. (2008) Multiple sclerosis and Alzheimer's disease. Annals of Neurology 63: 174–183. doi: 10.1002/ana.21240
[21]  Vercellino M, Masera S, Lorenzatti M, Condello C, Merola A, et al. (2009) Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. Journal of Neuropathology and Experimental Neurology 68: 489–502. doi: 10.1097/nen.0b013e3181a19a5a
[22]  Petzold A, Eikelenboom MJ, Gveric D, Keir G, Chapman M, et al. (2002) Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125: 1462–1473. doi: 10.1093/brain/awf165
[23]  Sobel RA, Mitchell ME (1989) Fibronectin in multiple sclerosis lesions. The American Journal of Pathology 135: 161–168.
[24]  Van Horssen J, B? L, Vos CMP, Virtanen I, De Vries HE (2005) Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. Journal of Neuropathology and Experimental Neurology 64: 722–729. doi: 10.1097/01.jnen.0000173894.09553.13
[25]  Van Horssen J, Dijkstra CD, De Vries HE (2007) The extracellular matrix in multiple sclerosis pathology. Journal of Neurochemistry 103: 1293–1301. doi: 10.1111/j.1471-4159.2007.04897.x
[26]  Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, et al. (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60: 577–584. doi: 10.1016/0092-8674(90)90661-w
[27]  Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology 7: 678–689. doi: 10.1038/nri2156
[28]  Bauer M, Brakebusch C, Coisne C, Sixt M, Wekerle H, et al. (2009) Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proceedings of the National Academy of Sciences of the United States of America 106: 1920–1925. doi: 10.1073/pnas.0808909106
[29]  Pierschbacher M, Hayman EG, Ruoslahti E (1983) Synthetic peptide with cell attachment activity of fibronectin. Proceedings of the National Academy of Sciences of the United States of America 80: 1224–1227. doi: 10.1073/pnas.80.5.1224
[30]  Ruoslahti E, Pierschbacher M (1987) New Perspectives in Cell Adhesion: RGD and Integrins. Science 238: 491–497. doi: 10.1126/science.2821619
[31]  D'Souza SE, Ginsberg MH, Plow EF (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends in Biochemical Sciences 16: 246–250. doi: 10.1016/0968-0004(91)90096-e
[32]  Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. 27: 534–539. doi: 10.1016/s0968-0004(02)02182-5
[33]  Lorand L, Dailey JE, Turner PM (1988) Fibronectin as a carrier for the transglutaminase from human erythrocytes. Proceedings of the National Academy of Sciences of the United States of America 85: 1057–1059. doi: 10.1073/pnas.85.4.1057
[34]  Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Reviews Molecular Cell Biology 4: 140–156. doi: 10.1038/nrm1014
[35]  Belkin AM (2011) Extracellular TG2: emerging functions and regulation. The FEBS Journal 278: 4704–4716. doi: 10.1111/j.1742-4658.2011.08346.x
[36]  Wang Z, Collighan RJ, Gross SR, Danen EHJ, Orend G, et al. (2010) RGD-independent cell adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 α5β1 integrin co-signaling. The Journal of Biological Chemistry 285: 40212–40229. doi: 10.1074/jbc.m110.123703
[37]  Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. The Journal of Cell Biology 148: 825–838. doi: 10.1083/jcb.148.4.825
[38]  Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98: 1567–1576. doi: 10.1182/blood.v98.5.1567
[39]  Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell-matrix interactions. Frontiers in Bioscience 11: 1057–1076. doi: 10.2741/1863
[40]  Collighan RJ, Griffin M (2009) Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 36: 659–670. doi: 10.1007/s00726-008-0190-y
[41]  ’t Hart BA, Massacesi L (2009) Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). Journal of Neuropathology and Experimental Neurology 68: 341–355. doi: 10.1097/nen.0b013e31819f1d24
[42]  Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129: 1953–1971. doi: 10.1093/brain/awl075
[43]  Mix E, Meyer-Rienecker H, Hartung H-P, Zettl UK (2010) Animal models of multiple sclerosis—potentials and limitations. Progress in Neurobiology 92: 386–404. doi: 10.1016/j.pneurobio.2010.06.005
[44]  Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, et al. (2008) Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells. The Journal of Immunology 180: 1326–1337. doi: 10.4049/jimmunol.180.3.1326
[45]  ’t Hart BA, Bauer J, Muller H-J, Melchers B, Nicolay K, et al. (1998) Histopathological Characterization of Magnetic Resonance Imaging-Detectable Brain White Matter Lesions in a Primate Model of Multiple Sclerosis. The American Journal of Pathology 153: 649–663. doi: 10.1016/s0002-9440(10)65606-4
[46]  Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, et al. (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals of Neurology 38: 788–796. doi: 10.1002/ana.410380514
[47]  Lucchinetti CF, Brück W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathology 6: 259–274. doi: 10.1111/j.1750-3639.1996.tb00854.x
[48]  Thomazy V, Fesus L (1989) Differential expression of tissue transglutaminase in human cells. Cell and Tissue Research 255: 215–224.
[49]  Gaudry CA, Verderio E, Jones RA, Smith C, Griffin M (1999) Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Experimental Cell Research 252: 104–113. doi: 10.1006/excr.1999.4633
[50]  Colak G, Johnson GVW (2012) Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiology of Disease 45: 1042–1050. doi: 10.1016/j.nbd.2011.12.023
[51]  De Jager M, Van der Wildt B, Schul E, Bol JGJM, Van Duinen SG, et al. (2013) Tissue transglutaminase colocalizes with extracellular matrix proteins in cerebral amyloid angiopathy. Neurobiology of Aging 34: 1159–1169. doi: 10.1016/j.neurobiolaging.2012.10.005
[52]  Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochemical and Biophysical Research Communications 224: 855–862. doi: 10.1006/bbrc.1996.1112
[53]  Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40: 164–174. doi: 10.1002/glia.10149
[54]  Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. Journal of Cell Science 114: 2989–3000.
[55]  ’t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends in Molecular Medicine 17: 119–125. doi: 10.1016/j.molmed.2010.11.006
[56]  B? L, M?rk S, Kong PA, Nyland H, Pardo CA, et al. (1994) Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. Journal of Neuroimmunology 51: 135–146. doi: 10.1016/0165-5728(94)90075-2
[57]  Popescu BFGH, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annual Review of Pathology 7: 185–217. doi: 10.1146/annurev-pathol-011811-132443
[58]  Trapp BD, Peterson J, Ransohoff RM, Rudick R, M?rk S, et al. (1998) Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine 338: 278–285. doi: 10.1056/nejm199801293380502
[59]  Van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathology and Applied Neurobiology 26: 2–10. doi: 10.1046/j.1365-2990.2000.00217.x
[60]  Hwang IK, Yoo K-Y, Yi SS, Kim IY, Hwang HS, et al. (2009) Expression of tissue-type transglutaminase (tTG) and the effect of tTG inhibitor on the hippocampal CA1 region after transient ischemia in gerbils. Brain Research 1263: 134–142. doi: 10.1016/j.brainres.2009.01.038
[61]  Van Strien ME, Drukarch B, Bol JG, Van der Valk P, Van Horssen J, et al. (2011) Appearance of tissue transglutaminase in astrocytes in multiple sclerosis lesions: a role in cell adhesion and migration? Brain Pathology 21: 44–54. doi: 10.1111/j.1750-3639.2010.00428.x
[62]  Kim S-Y, Grant P, Lee J-H, Pant HC, Steinert PM (1999) Differential Expression of Multiple Transglutaminases in Human Brain. Journal of Biological Chemistry 274: 30715–30721. doi: 10.1074/jbc.274.43.30715
[63]  Junn E, Ronchetti RD, Quezado MM, Kim S, Mouradian MM (2003) Tissue transglutaminase-induced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America 100: 2047–2052. doi: 10.1073/pnas.0438021100
[64]  Johnson GVW, Cox TM, Lockhart JP, Zinnerman MD, Miller ML, et al. (1997) Transglutaminase activity is increased in Alzheimer's disease brain. Brain Research 751: 323–329. doi: 10.1016/s0006-8993(96)01431-x
[65]  Lesort M, Chun W, Johnson GVW, Ferrante RJ (1999) Tissue Transglutaminase Is Increased in Huntington' s Disease Brain. Journal of Neurochemistry 72: 2018–2027. doi: 10.1046/j.1471-4159.1999.02018.x
[66]  Ruan Q, Johnson G V (2007) Transglutaminase 2 in neurodegenerative disorders. Frontiers in Bioscience 12: 891–904. doi: 10.2741/2111
[67]  Wilhelmus MMM, Van Dam A-M, Drukarch B (2008) Tissue transglutaminase: a novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases. European Journal of Pharmacology 585: 464–472. doi: 10.1016/j.ejphar.2008.01.059
[68]  Caccamo D, Currò M, Condello S, Ferlazzo N, Ientile R (2010) Critical role of transglutaminase and other stress proteins during neurodegenerative processes. Amino Acids 38: 653–658. doi: 10.1007/s00726-009-0428-3
[69]  Szondy Z, Sarang Z, Molnar P, Nemeth T, Piacentini M, et al. (2003) Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America 100: 2–7. doi: 10.1073/pnas.0832466100
[70]  Falasca L, Iadevaia V, Ciccosanti F, Melino G, Serafino A, et al. (2005) Transglutaminase type II is a key element in the regulation of the anti-inflammatory response elicited by apoptotic cell engulfment. Journal of Immunology 174: 7330–7340. doi: 10.4049/jimmunol.174.11.7330
[71]  Falasca L, Farrace MG, Rinaldi A, Tuosto L, Melino G, et al. (2008) Transglutaminase Type II Is Involved in the Pathogenesis of Endotoxic Shock. Journal of Immunology 180: 2616–2624. doi: 10.4049/jimmunol.180.4.2616
[72]  Oh K, Park H-B, Seo MW, Byoun O-J, Lee D-S (2012) Transglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation. Clinical Immunology 145: 122–132. doi: 10.1016/j.clim.2012.08.009
[73]  Mehta K, Lopez-Berestein G (1986) Expression of Tissue Transglutaminase in Cultured Monocytic Leukemia (THP-1) Cells during Differentiation Expression of Tissue Transglutaminase. Cancer Research 46: 1388–1394.
[74]  Hodrea J, Demény MA, Majai G, Sarang Z, Korponay-Szabó IR, et al. (2010) Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunology Letters 130: 74–81. doi: 10.1016/j.imlet.2009.12.010
[75]  Park KC, Chung KC, Kim Y-S, Lee J, Joh TH, et al. (2004) Transglutaminase 2 induces nitric oxide synthesis in BV-2 microglia. Biochemical and Biophysical Research Communications 323: 1055–1062. doi: 10.1016/j.bbrc.2004.08.204
[76]  Haanstra KG, Hofman SO, Lopes Estêv?o DM, Blezer ELA, Bauer J, et al. (2013) Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. Journal of Immunology 190: 1961–1973. doi: 10.4049/jimmunol.1202490
[77]  Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24: 4385–4415. doi: 10.1016/s0142-9612(03)00343-0
[78]  Seta N, Okazaki Y, Izumi K, Miyazaki H, Kato T, et al.. (2012) Fibronectin binding is required for acquisition of mesenchymal/endothelial differentiation potential in human circulating monocytes. Clinical & Developmental Immunology.
[79]  Seiving B, Ohlsson K, Linder C, Stenberg P (1991) Transglutaminase differentiation during maturation of human blood monocytes to macrophages. European Journal of Haematology 46: 263–271. doi: 10.1111/j.1600-0609.1991.tb01537.x
[80]  Calabrese M, Battaglini M, Giorgio A, Atzori M, Bernardi V, et al. (2010) Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology 75: 1234–1240. doi: 10.1212/wnl.0b013e3181f5d4da
[81]  De Graaf WL, Kilsdonk ID, Lopez-Soriano A, Zwanenburg JJM, Visser F, et al. (2013) Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter. European Radiology 23: 528–540. doi: 10.1007/s00330-012-2619-7
[82]  Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, et al. (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79: 523–530. doi: 10.1212/wnl.0b013e3182635645
[83]  Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, et al. (2008) Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathology 19: 238–253. doi: 10.1111/j.1750-3639.2008.00177.x
[84]  Vercellino M, Merola A, Piacentino C, Votta B, Capello E, et al. (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. Journal of Neuropathology & Experimental Neurology 66: 732–739. doi: 10.1097/nen.0b013e31812571b0
[85]  Stadelmann C, Brück W (2008) Cortical pathology in multiple sclerosis. Journal of Neurology 255: 12–18. doi: 10.1007/s00415-008-1003-7
[86]  B? L, Peterson JW, Mork S, Hoffman PA, Gallatin MW, et al. (1996) Distribution of Immunoglobulin Superfamily Members ICAM-1, -2, -3, and the [beta]2 Integrin LFA-1 in Multiple Sclerosis Lesions. Journal of Neuropathology & Experimental Neurology 55: 1060–1072. doi: 10.1097/00005072-199655100-00006
[87]  Nasu-Tada K, Koizumi S, Inoue K (2005) Involvement of b1 Integrin in Microglial Chemotaxis and Proliferation on Fibronectin: Different Regulations by ADP Through PKA. Glia 52: 98–107. doi: 10.1002/glia.20224
[88]  Sch?nrock L, Kuhlmann T, Adler S, Bitsch A, Brück W (1998) Identification of glial cell proliferation in early. Neuropathology and Applied Neurobiology 24: 320–330. doi: 10.1046/j.1365-2990.1998.00131.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133