全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Special Relativity Derived from Spacetime Magma

DOI: 10.1371/journal.pone.0100583

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components and Euclidean which is consistent with an “inversion symmetry” constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of “inverse norms” which play major roles with respect to various unital -algebras more generally.

References

[1]  Schutz JW (1989) Affne structure and isotropy imply Minkowski space-time and the orthochronous Poincare group. Journal of Mathematical Physics 30 (3): 635–638. doi: 10.1063/1.528431
[2]  Carlini A, Greensite J (1994) Why is spacetime Lorentzian? Physical Review D 49 (2): 866–878. doi: 10.1103/physrevd.49.866
[3]  Tegmark M (1997) On the dimensionality of spacetime. Classical and Quantum Gravity 14: L69–L75. doi: 10.1088/0264-9381/14/4/002
[4]  van Dam H, Ng YJ (2001) Why 3+1 metric rather than 4+0 or 2+2. Physics Letters B 520: 159–162. doi: 10.1016/s0370-2693(01)01140-6
[5]  Itin Y, Hehl FW (2004) Is the Lorentz signature of the metric of spacetime electromagnetic in origin? Annals of Physics 312: 60–83. doi: 10.1016/j.aop.2004.01.009
[6]  Yahalom A (2008) The geometrical meaning of time. Foundations of Physics 38: 489–497. doi: 10.1007/s10701-008-9215-3
[7]  Tegmark M (2014) Our Mathematical Universe. New York: Alfred A. Knopf.
[8]  Yau S-T (2013) Mathematical object or natural object? In: Brockman J, Editor. This Explains Everything. New York:Harper. p. 34.
[9]  Bourbaki N (1974) Algebra I. Reading, Mass.: Addison-Wesley. p. 1.
[10]  Page DN, Wootters WK (1983) Evolution without evolution: dynamics described by stationary observables. Physical Review 27: 2885. doi: 10.1103/physrevd.27.2885
[11]  Hestenes D (2003) Physics with Geometric Algebra. American Journal of Physics 71: 691–714. doi: 10.1119/1.1571836
[12]  Baylis W, Jones G (1989) The Pauli Algebra approach to Special Relativity. Journal of Physics A22: 1–16. doi: 10.1016/0920-5632(89)90417-9
[13]  Chappell J, Iqbal A, Lanella N, Abbott D (2012) Revisiting Special Relativity: a natural algebraic alternative to Minkowski spacetime. PLOS ONE 7 (12) :1-10 e51756.
[14]  McCrimmon K (2004) A Taste of Jordan Algebras. New York: Springer. p. 79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133